
EDUTELLA:
A P2P Networking Infrastructure Based on RDF

Wolfgang Nejdl, Boris Wolf, Changtao Qu
�

, Stefan Decker
�

, Michael Sintek
�

Ambjörn Naeve, Mikael Nilsson, Matthias Palmér
�

, Tore Risch
�

ABSTRACT
Metadata for the World Wide Web is important, but metadata for
Peer-to-Peer (P2P) networks is absolutely crucial. In this paper we
discuss the open source project Edutella which builds upon meta-
data standards defined for the WWW and aims to provide an RDF-
based metadata infrastructure for P2P applications, building on the
recently announced JXTA Framework. We describe the goals and
main services this infrastructure will provide and the architecture
to connect Edutella Peers based on exchange of RDF metadata. As
the query service is one of the core services of Edutella, upon which
other services are built, we specify in detail the Edutella Common
Data Model (ECDM) as basis for the Edutella query exchange lan-
guage (RDF-QEL-i) and format implementing distributed queries
over the Edutella network. Finally, we shortly discuss registration
and mediation services, and introduce the prototype and application
scenario for our current Edutella aware peers.

1. INTRODUCTION
While in the server/client-based environment of the World Wide

Web metadata are useful and important, for Peer-to-Peer (P2P) en-
vironments metadata are absolutely crucial. Information Resources
in P2P networks are no longer organized in hypertext like struc-
tures, which can be navigated, but are stored on numerous peers
waiting to be queried for these resources if we know what we
want to retrieve and which peer is able to provide that informa-
tion. Querying peers requires metadata describing the resources
managed by these peers, which is easy to provide for specialized
cases, but non-trivial for general applications.

P2P applications have been successful for special cases like ex-
changing music files. However, retrieving “all recent songs by
Madonna” does not need complex query languages nor complex
metadata, so special purpose formats for these P2P applications
have been sufficient. In other scenarios, like exchanging educa-
tional resources, queries are more complex, and have to build upon
standards like IEEE-LOM/IMS [5, 13] metadata with up to 100

�
Learning Lab Lower Saxony, University of Hannover, 30060 Han-

nover, Germany, � nejdl,wolf,qu � @learninglab.de�
Database Group, Stanford University, USA, ste-

fan@db.stanford.edu�
DFKI GmbH, Kaiserslautern, Germany, sintek@dfki.de�
Centre for user oriented IT Design, Royal Institute of Technology,

Stockholm, Sweden, � amb,mini,matthias � @nada.kth.se�
Department of Information Science, Uppsala University, Sweden,

tore.risch@dis.uu.se

Copyright is held by the author/owner(s).
WWW2002, May 7–11, 2002, Honolulu, Hawaii, USA.
ACM 1-58113-449-5/02/0005.

metadata entries, which might even be complemented by domain
specific extensions.

Furthermore, by concentrating on domain specific formats, cur-
rent P2P implementations appear to be fragmenting into niche mar-
kets instead of developing unifying mechanisms for future P2P ap-
plications. There is indeed a great danger (as already discussed in
[8]), that unifying interfaces and protocols introduced by the World
Wide Web get lost in the forthcoming P2P arena.

The Edutella project [9] addresses these shortcomings of current
P2P applications by building on the W3C metadata standard RDF
[22, 2]. The project is a multi-staged effort to scope, specify, ar-
chitect and implement an RDF-based metadata infrastructure for
P2P-networks based on the recently announced JXTA framework
[10]. The initial Edutella services will be Query Service (stan-
dardized query and retrieval of RDF metadata), Replication Service
(providing data persistence / availability and workload balancing
while maintaining data integrity and consistency), Mapping Ser-
vice (translating between different metadata vocabularies to enable
interoperability between different peers), Mediation Service (define
views that join data from different meta-data sources and reconcile
conflicting and overlapping information) and Annotation Service
(annotate materials stored anywhere within the Edutella Network).

Our vision is to provide the metadata services needed to enable
interoperability between heterogeneous JXTA applications. Our
first application will focus on a P2P network for the exchange of
educational resources (using schemas like IEEE LOM, IMS, and
ADL SCORM [37] to describe course materials), other application
areas will follow.

In Sections 2 and 3 we describe the background and framework
of the Edutella architecture and our educational application sce-
nario. Then, as the query service is one of the core services of
Edutella, upon which other services are built, we specify in de-
tail in Section 4 the Edutella common data model (ECDM) as ba-
sis for the Edutella query exchange language and format imple-
menting distributed queries over the Edutella network. Finally, we
sketch translations from the Edutella CDM to different query lan-
guages (Section 5), shortly discuss registration and mediation ser-
vices (Section 6), and introduce the prototype and application sce-
nario for our current Edutella aware peers (Section 7).

2. BACKGROUND

2.1 The JXTA P2P Framework
JXTA is an Open Source project [18, 10] supported and man-

aged by Sun Microsystems. In essence, JXTA is a set of XML
based protocols [36] to cover typical P2P functionality. It provides
a Java binding offering a layered approach for creating P2P ap-
plications (core, services, applications, see Figure 1, reproduced



from [10]). In addition to remote service access (such as offered
by SOAP), JXTA provides additional P2P protocols and services,
including peer discovery, peer groups, peer pipes, and peer moni-
tors. Therefore JXTA is a very useful framework for prototyping
and developing P2P applications.

Figure 1: JXTA Layers

This layered approach fits very nicely into our application sce-
narios defined for Edutella:

Edutella Services (described in web service languages like
DAML-S or WSDL, etc.) complement the Jxta Service Layer,
building upon the JXTA Core Layer, and

Edutella Peers live on the Application Layer, using the func-
tionality provided by these Edutella services as well as possibly
other JXTA services.

On the Edutella Service layer, we define data exchange formats
and protocols (how to exchange queries, query results and other
metadata between Edutella Peers), as well as APIs for advanced
functionality in a library-like manner. Applications like reposito-
ries, annotation tools or GUI interfaces connected to and accessing
the Edutella network are implemented on the application layer.

2.2 Educational Context
Every single university usually has already a large pool of edu-

cational resources distributed over its institutions. These are under
control of the single entities or individuals, and it is unlikely that
these entities will give up their control, which explains why all ap-
proaches for the distribution of educational media based on central
repositories have failed so far. Furthermore, setting up and main-
taining central servers is costly. The costs are hardly justifiable,
since a server distributing educational material would not directly
benefit the sponsoring university.

We believe, that in order to really facilitate the exchange of ed-
ucational media, approaches based on metadata-enhanced peer-to-
peer (P2P) networks are necessary.

In a typical P2P-based e-learning scenario, each university acts
not only as content provider but also as content consumer, includ-
ing local annotation of resources produced at other sites. As con-
tent provider in a P2P network they will not loose their control
over their learning resources but still provide them for use within
the network. As a content consumer both teachers and students
benefit from having access not only to a local repository, but to a
whole network, using queries over the metadata distributed within
the network to retrieve required resources.

P2P networks have already been quite successful for exchang-
ing data in heterogeneous environments, and have been brought
into focus with services like Napster and Gnutella, providing ac-
cess to distributed resources like MP3 coded audio data. How-
ever, pure Napster and Gnutella like approaches are not suitable
for the exchange of educational media. For example, the metadata
in Gnutella is limited to a file name and a path. While this might

work for files with titles like “Madonna - Like a Virgin”, it certainly
does not work for “Introduction to Algebra - Lecture 23”. Further-
more, these special purpose services lead to fragmented communi-
ties which use special purpose clients to access their service.

The educational domain is in need of a much richer metadata
markup of resources, a markup that is often highly domain and
resource type specific. In order to facilitate interoperability and
reusability of educational resources, we need to build a system sup-
porting a wide range of such resources. This places high demands
on the interchange protocols and metadata schemata used in such
a system, as well as on the overall technical structure. Also, we
do not want to create yet another special purpose solution which is
outdated as soon as metadata requirements and definitions change.

Our metadata based peer to peer system has therefore to be able
to integrate heterogeneous peers (using different repositories, query
languages and functionalities) as well as different kinds of metadata
schemas. We find common ground in the essential assumption that
all resources maintained in the Edutella network can be described
in RDF, and all functionality in the Edutella network is mediated
through RDF statements and queries on them. For the local user,
the Edutella network transparently provides access to distributed
information resources, and different clients/peers can be used to
access these resources. Each peer will be required to offer a number
of basic services and may offer additional advanced services.

3. EDUTELLA SERVICES
Edutella connects highly heterogeneous peers (heterogeneous in

their uptime, performance, storage size, functionality, number of
users etc.). However, each Edutella peer can make its metadata in-
formation available as a set of RDF statements. Our goal is to make
the distributed nature of the individual RDF peers connected to the
Edutella network completely transparent by specifying and imple-
menting a set of Edutella services. Each peer will be characterized
by the set of services it offers.

Query Service. The Edutella query service is the most basic
service within the Edutella network and will be described in more
detail in the second part of this paper. Peers register the queries
they may be asked through the query service (i.e. by specifying
supported metadata schemas (e.g., “this peer provides metadata ac-
cording to the LOM 6.1 or DCMI standards”) or by specifying indi-
vidual properties or even values for these properties (e.g., “this peer
provides metadata of the form dc title(X,Y)” or “this peer provides
metadata of the form dc title(X,’Artificial Intelligence’)”). Queries
are sent through the Edutella network to the subset of peers who
have registered with the service to be interested in this kind of
query. The resulting RDF statements / models are sent back to the
requesting peer.

Edutella Replication. This service is complementing local stor-
age by replicating data in additional peers to achieve data persis-
tence / availability and workload balancing while maintaining data
integrity and consistency. Since Edutella is mainly concerned with
metadata, replication of metadata is our initial focus. Replication
of data might be an additional possibility (though this complicates
synchronization of updates).

Edutella Mapping, Mediation, Clustering While groups of
peers will usually agree on using a common schema (e.g., SCORM
or IMS/LOM for educational resources), extensions or variations
might be needed in some locations. The Edutella Mapping ser-
vice will be able to manage mappings between different schemata
and use these mappings to translate queries over one schema X to
queries over another schema Y. Mapping services will also provide
interoperation between RDF- and XML-based repositories. Medi-
ation services actively mediate access between different services,



clustering services use semantic information to set up semantic
routing and semantic clusters.

4. EDUTELLA QUERY SERVICE
The Edutella Query Service is intended to be a standardized

query exchange mechanism for RDF metadata stored in distributed
RDF repositories and is meant to serve as both query interface for
individual RDF repositories located at single Edutella peers as well
as query interface for distributed queries spanning multiple RDF
repositories. An RDF repository (or knowledge base) consists of
RDF statements (or facts) and describes metadata according to ar-
bitrary RDFS schemas.

One of the main purposes is to abstract from various possible
RDF storage layer query languages (e.g. SQL) and from differ-
ent user level query languages (e.g. RQL, TRIPLE): The Edutella
Query Exchange Language and the Edutella common data model
provide the syntax and semantics for an overall standard query
interface across heterogeneous peer repositories for any kind of
RDF metadata. The Edutella network uses the query exchange lan-
guage family RDF-QEL-i (based on Datalog semantics and subsets
thereof) as standardized query exchange language format which is
transmitted in an RDF/XML-format.

Software Engineering

http://www.xyz.com/ai.html

http://www.lit.edu/types#Book

http://www.xyz.com/sw.html

Artificial Intelligence

dc:title

rdf:type

dc:title

rdf:type

Prolog

http://www.xyz.com/pl.html

dc:title

http://www.lit.edu/types#AI-Book

rdf:type

Figure 2: Knowledge Base as RDF Graph

We will start with a simple RDF knowledge base and a simple
query on this knowledge base depicted in Figure 2, with the follow-
ing RDF XML Serialization:

<lib:Book about="http://www.xyz.com/sw.html">
<dc:title>Software Engineering</dc:title>

</lib:Book>

<lib:Book about="http://www.xyz.com/ai.html">
<dc:title>Artificial Intelligence</dc:title>

</lib:Book>

<lib:AI-Book about="http://www.xyz.com/pl.html">
<dc:title>Prolog</dc:title>

</lib:AI-Book>

Evaluating the following query (plain English)

“Return all resources that are a book having the title
’Artificial Intelligence’ or that are an AI book.”

we get the query results shown in Figure 3, depicted as RDF-graph.

4.1 Query Exchange Architecture
Edutella peers are highly heterogeneous in terms of the func-

tionality (i.e. services) they offer. A simple peer has RDF storage

http://www.xyz.com/ai.html

http://www.lit.edu/types#Book Artificial Intelligence

dc:title
rdf:type

http://www.xyz.com/pl.html

http://www.lit.edu/types#AI-Book

rdf:type

Figure 3: Query Results as RDF Graph

capability only. The peer has some kind of local storage for RDF
triples (e.g., a relational database) as well as some kind of local
query language (e.g. SQL). In addition the peer might offer more
complex services such as annotation, mediation or mapping.

To enable the peer to participate in the Edutella network,
Edutella wrappers are used to translate queries and results from
the Edutella query and result exchange format to the local format
of the peer and vice versa, and to connect the peer to the Edutella
network by a JXTA-based P2P library.

To handle queries the wrapper uses the common Edutella query
exchange format and data model for query and result represen-
tation. For communication with the Edutella network the wrap-
per translates the local data model into the Edutella common data
model ECDM described in this paper and vice versa, and connects
to the Edutella Network using the JXTA P2P primitives, trans-
mitting the queries based on the common data model ECDM in
RDF/XML form.

In order to handle different query capabilities, we define several
RDF-QEL-i exchange language levels, describing which kind of
queries a peer can handle (conjunctive queries, relational algebra,
transitive closure, etc.) The same internal data model is used for all
levels.

4.2 Datalog Semantics for the Edutella Com-
mon Data Model (ECDM)

Datalog is a non-procedural query language based on Horn
clauses without function symbols. A Horn clause is a disjunction
of literals where there is at most one positive (non-negated) literal.
A Datalog program can be expressed as a set of rules/implications
(where each rule consists of one positive literal in the consequent
of the rule (the head), and one or more negative literals in the an-
tecedent of the rule (the body)), a set of facts (single positive lit-
erals) and the actual query literals (a rule without head, i.e. one or
more negative literals). Additionally, we can use negation as fail-
ure in the antecedent of a rule, with the semantics that such a literal
cannot be proven from the knowledge base (see, e.g., [34]).

Literals are predicates expressions describing relations be-
tween any combination of variables and constants such as ti-
tle(http://www.xyz.com/book.html, ’Artificial Intelligence’). Each
rule is divided into head and body with the head being a single lit-
eral and the body being a conjunction of any number of positive lit-
erals (including conditions on variables). Disjunction is expressed
as a set of rules with identical head. A Datalog query then is a
conjunction of query literals plus a possibly empty set of rules.

Datalog shares with relational databases and with RDF the cen-
tral feature, that data are conceptually grouped around properties
(in contrast to object oriented systems, which group information
within objects usually having object identity).1 Therefore Datalog

�

These views can be combined, though, see, e.g., [20] and[14], and



queries easily map to relations and relational query languages like
relational algebra or SQL. In terms of relational algebra Datalog
is capable of expressing selection, union, join and projection and
hence is a relationally complete query language. Additional fea-
tures include transitive closure and other recursive definitions.

The example knowledge base in Datalog reads

title(http://www.xyz.com/ai.html,’Artificial
Intelligence’).

type(http://www.xyz.com/ai.html,Book).
title(http://www.xyz.com/sw.html,’Software

Engineering’).
type(http://www.xyz.com/sw.html,Book).
title(http://www.xyz.com/pl.html,’Prolog’).
type(http://www.xyz.com/pl.html,AI-Book).

In RDF any statement is considered to be an assertion. Therefore
we can view an RDF repository as a set of ground assertions either
using binary predicates as shown above, or as ternary statements
“s(S,P,O)”, if we include the predicate as an additional argument. In
the following examples, we use the binary surface representation,
whenever our query does not span more than one abstraction level2.

Example Query in (binary) Datalog notation.

aibook(X) :- title(X, ’Artificial Intelligence’),
type(X, Book).

aibook(X) :- type(X, AI-Book).
?- aibook(X).

Since our query is a disjunction of two (purely conjunctive) sub-
queries, its Datalog representation is composed of two rules with
identical heads. The literals in the rules’ bodies directly reflect
RDF statements with their subjects being the variable X and their
objects being bound to constant values such as ’Artificial Intelli-
gence’. Literals used in the head of rules denote derived predicates
(not necessarily binary ones).

In our example, the query expression “aibook(X)” asks for all
bindings of X, which conform to the given Datalog rules and the
knowledgebase to be queried, with the results:

aibook(http://www.xyz.com/ai.html)
aibook(http://www.xyz.com/pl.html)

4.3 Edutella Common Data and Query Ex-
change Model

Internally Edutella Peers use a Datalog based model to represent
queries and their results. Figure 4 visualizes this data model as
UML class diagram. All classes beginning with RDF are standard
RDF concepts and reflect their usage in the Stanford RDF API [28].

Each query is represented as an instance of EduQuery which
aggregates an arbitrary number of EduRule and EduLiteral
objects. EduLiterals are either RDFReifiedStatements
(binary predicates / ternary statement literals, corresponding to rei-
fied RDF statements), EduStatementLiterals (non-ternary
statement literals, that cannot be expressed as ordinary RDF state-
ments) or EduConditionLiterals (a condition expression on
variables such as

�����
). In our examples we use different surface

notations of this data model, and switch to a predicate as argument
view, whenever our query spans more than one abstraction level
(see Section 4.7).

Technically, it is sufficient to define a single instance of
EduLiteral as query literal. However, by using a set of

to some extend RDFS, which specifies classes in an object oriented
way, even though it does not introduce object identity (though it
can easily be extended with it, see [29]).�

see the discussion in Section 4.7

hasHead:EduStatementLiteral
hasBody:EduLiteral

EduRule

hasResult
hasResults:EduResult

EduResultSet

hasBindings:EduVariableBinding

EduTupleResult

RDFModel

EduResult

negated:boolean

EduLiteral

hasBody

hasPredicate:Resource
hasArguments:RDFNode

EduStatementLiteral
variable:Resource
value:RDFNode

EduVariableBinding

hasBindings

RDFNode

value

Literal Resource

variable

Property

op:Operator
arg1:RDFNode
arg2:RDFNode

EduConditionLiteral

subject:Resource
predicate:Property
object:RDFNode

RDFReifiedStatement

hasPredicate

hasArguments

hasRules:EduRule
hasQueryLiterals:EduLiteral
hasResultSet:EduResultSet

EduQuery

hasResultSet

hasRules

hasQueryLiterals

arg1

arg2

object

subject

predicate

hasHead

Figure 4: Edutella Common Data and Query Exchange Model
(ECDM)

EduLiteral objects, all query literals together can be interpreted
as the RDF result graph of the EduQuery, as long as the query lit-
erals are all instances of RDFReifiedStatement.

An EduRule consists of an EduStatementLiteral as its
head and an arbitrary number of EduLiterals as its body.
EduStatementLiterals can occur within a rule’s body as
well to allow reuse of other rules and recursion.3

In database terms, EduStatementLiterals are intensional
predicates, and are defined through the head of rules. RDFRei-
fiedStatements are extensional predicates, and are stored ex-
plicitly in the RDF database. Therefore, RDFReifiedState-
ments can be expressed by binary predicates / ternary predicate
statements, while EduStatementLiterals can have more
than two arguments for the predicate.

Results are represented either as a set of RDFModel or Edu-
TupleResult objects depending on whether the results are re-
quested to be in RDF graph or tuple format. In the latter case
each EduTupleResult aggregates a number of EduVari-
ableBinding objects - one for each variable within the query.

4.4 Edutella Wrapper API
The following sketches the current prototypical Edutella Wrap-

per API, version 0.8, used as a blueprint in our current Edutella
wrappers, to enable Edutella peers to handle our Edutella common
data model in a coherent manner. The API will most likely change
in subsequent versions, but its structure gives a good overview over
the functionalities this API has to provide.

The Java binding (available from the Edutella Project Page4) is
composed of the following packages:

net.jxta.edutella.util.datamodel: Contains all
classes for the Edutella common data model as described
in Figure 4. This common model is used for transmitting
queries within the Edutella network.

net.jxta.edutella.util: Contains classes RDF-QEL-1,
RDF-QEL-2, etc. for importing queries given in the respec-
tive formats into the internal query model or in turn export
queries from the internal model into other syntaxes and rep-
resentations.

�
Note, that as input format we can even allow arbitrary first order

logic formulas in the body of rules, which then can be transformed
into a set of rules using the Lloyd-Topor transformation [24].�
http://edutella.jxta.org/



net.jxta.edutella.peer: Contains general service imple-
mentations for Edutella peers, e.g., Edutella provider service,
consumer service, and hub service, etc. Also the general in-
terfaces for Edutella provider adapter, hub adapter, and con-
sumer adapter are defined in this package.

net.jxta.edutella.provider: Contains a general
Edutella Provider implementation which runs an Edutella
provider service. Various Edutella providers can realize
different adapters, which correspond to different back-end
repositories, and embed these adapters into the general
implementation as plug-ins.

net.jxta.edutella.hub: Contains a general Edutella hub
implementation which runs an Edutella hub service. Various
Edutella hubs can adopt different mechanisms to handle dis-
tributed query and implement various query mediators in the
form of plug-ins to the general Edutella hub implementation.

net.jxta.edutella.consumer: Contains a general
Edutella consumer implementation which runs an Edutella
consumer service. Various Edutella consumers can realize
different adapters to provide different presentations of query
results.

4.5 RDF-QEL-i Language Levels
In the definition of the Edutella query exchange language, sev-

eral important design criteria have been formulated:
Standard Semantics of query exchange language, as well as a

sound RDF serialization. Simple and standard semantics of the
query exchange language is important, as transformations to and
from this language have to be performed within the Edutella peer
wrappers, which have to preserve the semantics of the query in the
original query language. A sound encoding of the queries in RDF
to be shipped around between Edutella peers has to be provided.

Expressiveness of the language. We want to interface with both
simple graph based query engines as well as SQL query engines
and even with inference engines. It is important that the lan-
guage allows expressing simple queries in a form that simple query
providers can directly use, while allowing for advanced peers to
fully use their expressiveness.

Adaptability to different formalisms. The query language
has to be neutral to different representation semantics, it should
be able to use any predicates with predefined semantics (like
rdfs:subclassOf), but not have their semantics built in, in or-
der to be applicable to different formalisms used by the Edutella
peers. It should easily connect to simple RDFS repositories, rela-
tional databases and object-relation ones, as well as to inference
systems, with all their different base semantics and capabilities.

Transformability of the query language. The basic query ex-
change language model must be easy to translate to many different
query languages (both for importing and exporting), allowing easy
implementation of Edutella peer wrappers.

Edutella follows a layered approach for defining the query ex-
change language. Currently we have defined language levels RDF-
QEL-1, -2, -3, -4 and -5, differing in expressiveness. The most
simple language (RDF-QEL-1) can be expressed as unreified RDF
graph, the complex ones are more expressive than RDF itself and
therefore have to be expressed using reified RDF statements. All
language levels can be represented through the same internal data
model.

4.5.1 RDF-QEL-1
The RDF-QEL-1 syntax design is driven by its simplicity and

readability: Following a QBE (Query By Example) paradigm

queries are represented using ordinary RDF graphs having exactly
the same structure as the answer graph, with additional annotations
to denote variables and constraints on them. Any RDF graph query
can be interpreted as a logical (conjunctive) formula that is to be
proven from a knowledge base.

#Y

http://www.lit.edu/types#Book Artificial Intelligence

dc:title
rdf:type

#X

http://www.lit.edu/types#AI-Book

rdf:type

#AI_Query_2

edu:hasVariable

edu:Variable

rdf:type

edu:Query

rdf:type

#AI_Query_1

edu:hasVariable

rdf:type rdf:type

Figure 5: Example Query in RDF-QEL-1, Unreified Format

Since disjunction cannot be expressed in RDF-QEL-1 our exam-
ple query has to be split into two separate sub queries (Figure 5).

<edu:QEL1Query rdf:ID="AI_Query_1">
<edu:hasVariable rdf:resource="#X"/>

</edu:QEL1Query>

<edu:Variable rdf:ID="X" rdfs:label="X">
<rdf:type
rdf:resource="http://www.lit.edu/types#AIBook"/>

</edu:Variable>

<edu:QEL1Query rdf:ID="AI_Query_2">
<edu:hasVariable rdf:resource="#Y"/>

</edu:QEL1Query>

<edu:Variable rdf:ID="Y" rdfs:label="X">
<rdf:type
rdf:resource="http://www.lit.edu/types#Book"/>

<dc:title>Artificial Intelligence</dc:title>
</edu:Variable>

4.5.2 RDF-QEL-2
Extending RDF-QEL-1 with disjunction leads to RDF-QEL-2.

As this language is no longer purely assertional, it cannot be ex-
pressed directly in RDF without talking about RDF triples in order
to combine them logically. For this purpose, we utilize the RDF
construct called reification. Reifying an RDF statement involves
creating a model of the RDF triple in the form of an RDF resource
of type Statement. This resource has as properties the subject, the
predicate and the object of the modeled RDF triple. Such reified
statements are the building blocks for each query and can, in RDF-
QEL-2, linked together by an AND-OR tree. In RDF-QEL-2 the
example query reads like

<edu:Variable rdf:about="#X" rdfs:label="X"/>

<edu:And rdf:about="#andbagID">
<rdf:_2 rdf:resource="#st2"/>
<rdf:_1 rdf:resource="#st3"/>

</edu:And>

<edu:Or rdf:about="#orbagID">



<rdf:_1 rdf:resource="#andbagID"/>
<rdf:_2 rdf:resource="#st1"/>

</edu:Or>

<edu:QueryStatement rdf:about="#st1">
<rdf:subject rdf:resource="#X"/>
<rdf:object
rdf:resource="http://www.lit.edu/types#AIBook"/>

<rdf:predicate rdf:resource="rdf:type"/>
</edu:QueryStatement>

<edu:QueryStatement rdf:about="#st2">
<rdf:subject rdf:resource="#X"/>
<rdf:object
rdf:resource="http://www.lit.edu/types#Book"/>

<rdf:predicate rdf:resource="rdf:type"/>
</edu:QueryStatement>

<edu:QueryStatement rdf:about="#st3">
<rdf:object>Artificial Intelligence</rdf:object>
<rdf:subject rdf:resource="#X"/>
<rdf:predicate rdf:resource="dc:title"/>

</edu:QueryStatement>

The advantage of the RDF-QEL-2 form is that queries can eas-
ily be visualized using a query graph. The Conzilla query interface
[30] is based on a subset of UML, using the UML specialization
relationship for logical OR and the UML aggregation relationship
for logical AND. As shown in Figure 6, our current prototype uses
a graph-view, which is displayed as ordinary RDF with the excep-
tion that the triplets searched for (which are reified in RDF-QEL-i,
where �

���
) are displayed as dashed arrows indicating that they

are searched for. The logical view is displayed as a parse tree.
This is the logical combination of the primitive statements, show-
ing which combinations that should be matched at the same time in
order for the query to succeed. The connections between the differ-
ent views are displayed by highlighting the corresponding parts.

Figure 6: Edutella Graph Query Interface

Queries can be stored and reused later, thus we can work with
a library of queries that can be combined to new queries. Those
queries can either be used as is or as templates, where sub-strings,
numerical values, etc are filled in. Details of sub-queries can be
suppressed by hiding them in detailed maps that can be presented
hierarchically.

4.5.3 RDF-QEL-3
Going a step further, we might actually choose to skip RDF-

QEL-2 in favor of RDF-QEL-3, which allows conjunction, dis-
junction and negation of literals. RDF-QEL-3 is essentially Dat-
alog. Hence, the query is a set of Datalog rules, which can be
encoded easily using reified statements (as for RDF-QEL-2), intro-
ducing additional constructs for negation and implication. As long
as queries are non-recursive this approach is relationally complete.
The example query expressed in RDF-QEL-3 resembles the inter-
nal Datalog model described above.

<edu:QEL3Query rdf:ID="AI_Book_Query">

<edu:hasQueryLiteral rdf:resource="st0"/>
<edu:hasRule rdf:resource="r1"/>
<edu:hasRule rdf:resource="r2"/>

</edu:QEL3Query>

<edu:Variable rdf:ID="X" rdfs:label="X"/>

<edu:Rule rdf:ID="r1">
<edu:hasHead rdf:resource="st0"/>
<edu:hasBody rdf:resource="st2"/>
<edu:hasBody rdf:resource="st3"/>

</edu:Rule>

<edu:Rule rdf:ID="r2">
<edu:hasHead rdf:resource="st0"/>
<edu:hasBody rdf:resource="st1"/>

</edu:Rule>

<edu:QueryStatement rdf:ID="st0">
<edu:predicate rdf:resource="aibook"/>
<edu:arguments>
<rdf:Seq>
<rdf:_1 rdf:resource="#X"/>

</rdf:Seq>
</edu:arguments>

</edu:QueryStatement>

<edu:QueryStatement rdf:ID="st1">
<rdf:subject rdf:resource="#X"/>
<rdf:object
rdf:resource="http://www.lit.edu/types#AIBook"/>

<rdf:predicate rdf:resource="rdf:type"/>
</edu:QueryStatement>

<edu:QueryStatement rdf:ID="st2">
<rdf:subject rdf:resource="#X"/>
<rdf:object
rdf:resource="http://www.lit.edu/types#Book"/>

<rdf:predicate rdf:resource="rdf:type"/>
</edu:QueryStatement>

<edu:QueryStatement rdf:ID="st3">
<rdf:object>Artificial Intelligence</rdf:object>
<rdf:subject rdf:resource="#X"/>
<rdf:predicate rdf:resource="dc:title"/>

</edu:QueryStatement>

4.5.4 Further RDF-QEL-i Levels
RDF-QEL-4: RDF-QEL-4 allows recursion to express transi-

tive closure and linear recursive query definitions, compatible with
the SQL3 capabilities. So a relational query engine with full con-
formance to the SQL3 standard will be able to support the RDF-
QEL-4 query level.

RDF-QEL-5: Further levels allow arbitrary recursive definitions
in stratified or dynamically stratified Datalog, guaranteeing one sin-
gle minimal model and thus unambiguous query results ([31]).5

RDF-QEL-i-A: Support for the usual aggregation functions as
defined by SQL2 (e.g. COUNT, AVG, MIN, MAX) will be denoted
by appending “-A” to the query language level, i.e. RDF-QEL-1-
A, RDF-QEL-2-A, etc. RDF-QEL-i-A includes these aggregation
functions as edu:count, edu:avg, edu:min, etc. Additional “foreign”
functions like edu:substring etc. to be used in conditions might be
useful as well, but have not been included yet in RDF-QEL-i-A.

�
Technically, when using negation, recursion and the ternary repre-

sentation of statements, static stratification can never be guaranteed
(because we only use one ternary predicate “s(S,P,O)”), so we have
to rely on dynamic stratification (which depends on the actual in-
stantiation of literals) or switch to well-founded semantics.



4.6 Representing Complex Property Seman-
tics

RDFS already comes with predefined semantics for certain
properties (i.e. transitiveness of rdfs:subclassof, inheritance for
rdf:type). Whenever the query includes these pre-defined predi-
cates, we presume these to have the pre-defined semantics. This is
valid for DAML-OIL pre-defined predicates and their semantics as
well, i.e. if we use definitions like

<daml:TransitiveProperty rdf:ID=’hasAncestor/>

then transitivity of hasAncestor is assumed

hasAncestor(X,Y) :- hasAncestor(X,Z),
hasAncestor(Z,Y).

without having to be specified explicitly in the query.
If we want to specify something else, we have in prin-

ciple to specify its semantics as Datalog rule, and ship it
with the query. However, we can add special annotations
like edu:transitive closure of (denoting transi-
tive closure of properties), edu:inherited version of
(inheritance of properties along the subclassOf-hierarchy),
edu:reflexive version of (reflexive version of a prop-
erty) to properties, which can be used directly by the Edutella
peer wrapper (whenever it knows what these edu:properties
mean). This has the advantage, that the wrapper does not have to
infer the correct semantics from the corresponding Datalog rules,
but can use the predefined semantics for these edu:properties
directly.6 This keeps the clear semantics for RDF-QEL-i, but allow
abbreviations which make it easier to write Edutella peer wrappers.

4.7 Querying Schema Information
As apparent already from the RDFS schema definition [2], and

discussed in more detail in the recent RDF model theory [12] (see
also the axiomatic definition of an extension of RDFS we called
O-Telos-RDF [29]), RDFS does not distinguish between data and
schema level, and represents all information in a uniform way as a
graph. Indeed, as discussed in [29] in some more details, there is
no principle difference between entities at different modeling levels
(i.e. objects, classes and meta-classes are represented in a uniform
way), and queries over an RDFS schema should not be more diffi-
cult than queries over RDFS data.

Therefore our internal query exchange model as shown in Fig-
ure 4 treats entities on all levels in a uniform way (as RDFNodes),
and the attributes of EduStatementLiterals can be entities
on different levels (objects, classes or even predicates). Therefore,
representing queries at different levels does not pose problems.

In order to express Datalog like queries ranging over different ab-
straction levels, instead of writing properties as binary predicates,
we have to switch to a triple syntax using a ternary predicate “s”,
i.e. instead of writing “book(X,’Artificial Intelligence’)” we write
“s(X,book,’Artificial Intelligence’)”. If we enforce the restriction,
that the predicate symbol “s” always denotes this special ternary
predicate, we can also mix this notation with the binary predicate
notation we used so far in our examples. Generalizing the query
from our running example a bit, we now want to ask for any addi-
tional property our AI books might have, getting the query:

aibook(X) :- title(X, ’Artificial Intelligence’),
type(X, Book).

aibook(X) :- type(X, AI-Book).
�

These predefined edu:properties can be seen as macros,
which take the corresponding properties and generate the cor-
responding Datalog definitions (see also the discussion in Sec-
tion 5.1).

book_property(P) :- s(P, rdfs:domain, Book).
ai_book_property(P) :- s(P, rdfs:domain, AI-Book).

ai_book_attribute(X,P,V) :-
aibook(X), book_property(P), s(X,P,V).

ai_book_attribute(X,P,V) :-
aibook(X), ai_book_property(P), s(X,P,V).

?- ai_book_attribute(X,P,V)

4.8 Result Formats

4.8.1 Standard Result Set Syntax
As a default, we represent query results as a set of tuples of vari-

ables with their bindings. Referring to our example there are two
bindings for a single variable:

<edu:ResultSet rdf:ID="AI_Results">
<edu:hasResult rdf:parseType="Resource">

<rdf:type rdf:resource="edu:TupleResult"/>
<edu:hasVariable rdf:parseType="Resource">
<rdf:type rdf:resource="edu:VariableBinding"/>
<edu:bindsVariable rdf:resource="#X"/>
<rdf:value
rdf:resource="http://www.xyz.com/ai.html"/>

</edu:hasVariable>
</edu:hasResult>
<edu:hasResult rdf:parseType="Resource">

<rdf:type rdf:resource="edu:TupleResult"/>
<edu:hasVariable rdf:parseType="Resource">
<rdf:type rdf:resource="edu:VariableBinding"/>
<edu:bindsVariable rdf:resource="#X"/>
<rdf:value
rdf:resource="http://www.xyz.com/pl.html"/>

</edu:hasVariable>
</edu:hasResult>

</edu:ResultSet>

This is also shown in Figure 4, and closely follows the conven-
tion of returning substitutions for variables occuring in queries to
logic programs.

4.8.2 RDF Graph Answers
Another possibility, which has been explored recently in Web

related languages focusing on querying semistructured data (for an
overview see, e.g., [1]), is the ability to create objects as query
results. In the simple case of RDF-QEL-1, we can return as answer
objects the graph representing the RDF-QEL-1 query itself with all
Edutella specific statements removed and all variables instantiated.
The results can be interpreted as the relevant sub graph of the RDF
graph we are running our queries against (see Figure 3). In other
words, the answer graph contains sufficient information, so that
running the query using only the data in the answer graph returns
the same result as running the query against the original database.

<lib:Book about="http://www.xyz.com/ai.html">
<dc:title>Artificial Intelligence</dc:title>

</lib:Book>
<lib:AI-Book about="http://www.xyz.com/pl.html"/>

When we use general RDF-QEL-i queries, we assume the struc-
ture of the answer graph to be defined by the query literals (pro-
vided they are all binary predicates). Note, that all variables used
in the query literals are assumed to be existentially quantified, so if
they are not instantiated during the query evaluation, they are repre-
sented as anonymous nodes in the RDF answer graph (as discussed
in [12]).7

�

Anonymous nodes, i.e. existential variables in the RDF graph it-
self, can be handled by the usual Lloyd-Topor transformation [24].



If we also allow skolem functions in the head literals of our rules,
we are able to generate arbitrary complex objects, which use these
skolem values as object IDs (see also [1]). This use of skolem func-
tions was introduced in proposals unifying logic and object oriented
formalisms, first informally discussed in [26] and refined in later
proposals, e.g. [20]. Even though RDF does not allow skolem func-
tions, we can return the answer objects as RDF graphs in such cases
with anonymous nodes substituted for each skolem value (different
anonymous nodes for different skolem values).

If we use existing resources to group the properties of an object,
we can use the resource URI directly instead of introducing a new
skolem value, as in our previous example, with a slight modifica-
tion in the query literals:

?- ai_book_attribute(X,P,V), s(X,P,V).

In this case, we can group around the resources of type book
all their properties, and therefore return as answer objects the sets
of s-triples corresponding to the resource-property-value triples
each book found through the query (i.e. the “hedgehogs” centered
around the URIs of the books).

5. WRAPPING DIFFERENT PEER QUERY
LANGUAGES

The following sections are not meant to be complete characteri-
zations of the mappings but rather sketch these mappings and trans-
late our example query into the local query language. Further de-
tails will be found in a forthcoming report.

5.1 RQL
RQL is an RDF query language described in [19] and [3], and

used within the EU-IST project On-To-Knowledge. RQL focuses
on SQL like query expressions, exploiting path expressions, im-
plicit and explicit joins, and the usual comparison operators. All ex-
amples in [19] and [3] can be expressed using conjunctive queries,
though the formal RQL specification also includes all set operations
(union, intersect and minus), making it relationally complete.

The default for queries including typeOf and subclas-
sOf is to use transitivity of subclassOf, as defined by RDFS.
These queries would be translated using simple typeof(X,Y)
and subclassof(X,Y) binary predicates, as the transitivity of
subclassof is reflected in the query engine, not in the query
language.

Additionally, RQL specifies the variants typeOfˆ and sub-
classOfˆ (“direct” typeOf and subclassOf), which can be
defined in Datalog as follows (assuming subclassOf not to be
reflexive, as advocated in [2]):

typeofˆ(X,Y) :- typeof(X,Y),
not(typeof(X,Z), subclassof(Z,Y)).

subclassofˆ(X,Y) :-
subclassof(X,Y),
not(subclassof(X,Z), subclass(Z,Y)).

or the other way around, if we assume that the local peer stores
only the “typeofˆ ” and “subclassofˆ ” facts

subclassof(X,Y) :- subclassofˆ(X,Y).
subclassof(X,Y) :- subclassof(X,Z), subclassofˆ(Z,Y).

typeof(X,Y) :- typeofˆ(X,Y).
typeof(X,Y) :- subclassof(Z,Y), typeofˆ(X,Z).

and alternatively using the predefined properties
“edu:inherited version of” and “edu:transitive closure of”

<rdf:Property rdf:ID="typeOf">
<edu:inherited_version_of
rdf:resource="#typeOfˆ"/>

</rdf:Property>

<rdf:Property rdf:ID="subclassOf">
<edu:transitive_closure_of
rdf:resource="#subclassOfˆ"/>

</rdf:Property>

which assumes the corresponding Datalog definitions above.
Translating these special constructs “typeofˆ ” and “subclassofˆ ”
needs additional recursive definitions in the query exchange lan-
guage (i.e. RDF-QEL-5 capability). However, if the Edutella wrap-
per for an RQL peer understands “edu:inherited version of” and
“edu:transitive closure of”, these definitions can be automatically
generated, so we can avoid shipped them along with the query, and
stay with RDF-QEL-3 (non-recursive Datalog) queries.8

Example query in RQL:

select X
from Book{X}.title{Y}
where Y = "Artificial Intelligence"
UNION
select X
from AI-Book{X}

Structurally and syntactically the query looks similar to its SQL
counterpart. RQL uses its own syntax and does not come with any
RDF XML serialization. The RDF type statements do not need to
be made explicit since the RDFS class concept is an inherent part
of RQL. Both sub queries use linear path expressions. In case the
queries are based on more complex graph structures several linear
path expressions are enumerated in the FROM clause and have to
be joined explicitly by a WHERE clause. For querying schema
information, which is also possible in RQL, we translate the RQL
query expressions into Edutella Datalog programs using the ternary
notation of triples, as discussed in Section 4.7.

5.2 TRIPLE
TRIPLE is an RDF query, inference, and transformation lan-

guage [35] based on Horn logic F-Logic [20]. TRIPLE’s archi-
tecture allows semantic features to be defined for various object-
oriented and other RDF extensions like RDF Schema. TRIPLE
provides a (human readable) Prolog-like syntax as well as an RDF-
based syntax for exchanging queries and rules. In the Prolog-like
syntax, RDF statements are written as molecules, i.e.,

subject
�
predicate � � object �

or, for multiple predicate-object pairs for one subject,

subject
�
pred � � � obj ��� pred � � � obj ��������� �

Our sample knowledge base and query can be mapped as fol-
lows:

// namespace abbreviations
rdf := ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.
dc := ’http://purl.org/dc/elements/1.0/’.
types := ’http://www.lit.edu/types#’.
xyz := ’http://www.xyz.com/’.
// sample knowledge base
xyz:’sw.html’[ rdf:type -> types:Book;
	
The peer actually does not need to use these recursive Datalog

definitions directly, but instead simply can translate properties like
“typeofˆ ” and “subclassofˆ ” into the local versions implementing
the specified semantics.



dc:title -> ’Software Engineering’ ].
xyz:’ai.html’[ rdf:type -> types:Book;

dc:title -> ’Artificial Intelligence’ ].
xyz:’pl.html’[ rdf:type -> types:’AI-Book’;

dc:title -> ’Prolog’ ].
// sample query
FORALL X aibook(X) <-

X[rdf:type -> types:’AI-Book’]
OR X[rdf:type -> types:Book;

dc:title -> ’Artificial Intelligence’].

TRIPLE regards RDF data not as one large heap, but partitions
the set of RDF data in different subsets, called RDF models. Differ-
ent subsets could be coming from different sources, have different
semantics etc. TRIPLE supports models, parameterized models,
model expressions, etc., which are useful extensions to RDF-QEL-
i as well, when we want to concentrate more on data integration
and transformation using different sources.

In general, at least RDF-QEL-3 is needed to capture TRIPLE
programs, which are then very close to our internal data model
(both being based on Horn logic). Currently unsupported in RDF-
QEL-3 are some additional features of TRIPLE, e.g., functional
terms and RDF models as sets of statements.

5.3 SQL
To keep the discussion simple, we assume a single STATE-

MENTS table (i.e., we use the triple-oriented view and ternary
statements) storing all statements the repository is aware of in a re-
lational database.9 The table consists of three columns SUBJECT,
PREDICATE and OBJECT of type character string with each col-
umn value being interpreted either as concatenation of namespace
and resource name or as literal value. More sophisticated database
schemas might provide a view according to this one-table schema.

The mapping of the example query is straightforward. In terms
of its Datalog representation the query may be satisfied by either of
its two rules with the first being a conjunction of two literals and
the second only involving a single literal. The disjunction of the
two rules is mapped to a UNION of two sub queries. This query
structure directly resembles the RDF-QEL-3 syntax as well as the
internal Datalog query model.

SELECT S1.SUBJECT
FROM STATEMENT S1, STATEMENT S2
WHERE S1.PREDICATE =
’http://purl.org/dc/elements/1.1/#title’

AND S1.OBJECT = ’Artificial Intelligence’
AND S2.PREDICATE =
’http://www.w3.org/1999/02/22-rdf-syntax-ns#type’

AND S2.OBJECT = ’http://www.lit.edu/types#Book’
AND S1.SUBJECT = S2.SUBJECT)
UNION
SELECT S1.SUBJECT
FROM STATEMENT S1
WHERE S1.PREDICATE =
’http://www.w3.org/1999/02/22-rdf-syntax-ns#type’

AND S1.OBJECT = ’http://www.lit.edu/types#AIBook’

More complicated queries with rules referencing other rules in
their bodies need to be modeled either as nested queries or as de-
rived relations [34]. It is not possible to map queries containing re-
cursive rules to traditional SQL (that is SQL92 or below), therefore
SQL2 only maps queries up to RDF-QEL-3. With SQL3 support-
ing linear recursion we are also able to map RDF-QEl-4 queries.
For those more familiar with relational algebra expressions, we also
provide the query in relational algebra. In contrast to the statement
�
Some RDF stores include additional information like models, etc.,

which we neglect in this section.

centric view used in the SQL mapping, we use a predicate centric
approach here, with one relation (or table) for each predicate.
�������	��
 ������������
������� ���������� "!$#%�%& '(��& )+*-,/.0�%��* * & 1���.2��� ��354+376985:<;=��� ���������� �> �?�+@���3BA�CD8B:�:
E ��� � ���������� "!",F> �?�+@ ��3BA�CD8B:�:�:

5.4 XPath/dbXML
The open source native XML database dbXML [6] provides a

natural way to store XML-based learning resource meta-data. In
the following we show an example knowledge base stored in our
dbXML-based meta-data repository (using DCMI RDF/XML bind-
ing [21]):

<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/">
<rdf:Description
rdf:about="http://www.xyz.org/ai.html">
<dc:title>Artificial Intelligence</dc:title>
<dc:type>Book</dc:type>

</rdf:Description>

<rdf:Description
rdf:about="http://www.xyz.org/sw.html">
<dc:title>Software Engineering</dc:title>
<dc:type>Book</dc:type>

</rdf:Description>

<rdf:Description
rdf:about="http://www.xyz.org/pl.html">
<dc:title>Prolog</dc:title>
<dc:type>AI-Book</dc:type>

</rdf:Description>
</rdf:RDF>

Because dbXML employs the W3C XPath language [4] to ac-
complish its query service, the first task for dbXML content
providers is to map RDF-QEL-1 to a query representation in XPath.
XPath provides several XML-specific features (like retrieving hier-
archical substructures from a whole XML document). If we ab-
stract from these features and focus on the features comparable to
a relational query language, XPath basically provides select state-
ments identifying specific tags within XML documents. So con-
junctive queries in RDF-QEL-1 can be mapped into conjunctions
of XPath expressions.

In case the XML-database also supports disjunction between
XPath expressions, we can also translate RDF-QEL-2 queries into
appropriate XPath queries using both AND and OR Boolean con-
nectives. The translation between XML- and RDF-schemas such
as IMS or LOM for learning resources is especially easy, because
these schemas basically define hierarchically structured metadata,
where the differences between RDF and XML hardly matter. Our
example query can be written in the syntax of XPath as

/rdf:RDF/rdf:Description/dc:title[text()=
"Artificial Intelligence"]

AND
/rdf:RDF/rdf:Description/dc:type[text()="Book"]
OR
/rdf:RDF/rdf:Description/dc:type[text()="AIBook"]

and the results will be

<rdf:Description
rdf:about="http://www.xyz.com/ai.html">
<dc:title>Artificial Intelligence</dc:title>
<rdf:type>Book</rdf:type>



</rdf:Description>

<rdf:Description
rdf:about="http://www.xyz.com/pl.html">
<dc:title>Prolog</dc:title>
<rdf:type>AI-Book</rdf:type>

</rdf:Description>

Note, that the default behaviour for XPath result sets in dbXML
is different from the result sets defined for our RDF-QEL-i queries.
RDF-QEL-i queries return exactly the tuples which we mention
in the query, while XPath queries in dbXML by default return
the whole sub-document located below the element selected by
the XPath expression, but might also identify the whole document
matching this expression.

5.5 AmosQL and Mediators
Amos II [33] is a distributed mediator engine where views of

data from several different data sources can be defined. The views
are defined using the object-relational query language AmosQL.
AmosQL is relationally complete.

It is relatively simple to translate RDF and RDF-Schema meta-
data descriptions to AmosQL schema manipulation statements.
RDF-QEL-i queries can the also easily be translated to AmosQL
statements, as will be shown. However, it is more challenging to
represent the mediators themselves in RDF or RDF-Schema, the
reasons being that Amos II has a rich object-oriented data model,
e.g. many data types and mediation primitives, which are needed
for mediation from many different kinds of data sources.

Types in Amos II correspond to classes in RDF-Schema. An
Amos II object is classified into one or more types making the ob-
ject an instance of those types. The set of all instances of a type
is called the extent of the type. The types are organized in a mul-
tiple inheritance, supertype/subtype hierarchy. If an object is an
instance of a type, then it is also an instance of all the supertypes of
that type; conversely, the extent of a type is a subset of the extent
of a supertype of that type (extent-subset semantics).

Meta-objects (system objects) in Amos II mediators, such as
types and function, are first class and can be queried as any other
objects. This makes it straight-forward to represent RDF-Schema
classes as Amos II types. The transparent representation of meta-
objects in the mediators allows powerful queries about the capabil-
ities and structure of each mediator.

Object attributes, queries, methods, and relationships are mod-
eled by functions in Amos II. Depending on their implementation
the functions can be classified into several kinds including stored
functions that represent facts and correspond to properties in RDF,
derived functions that represent views and correspond to rules in
Datalog, and foreign functions that implement algorithms external
to the query language (e.g in Java). When wrapping external data
sources with Amos II the multi-directional foreign function facility
[33] provides the primitive to specify access paths and capabilities
of the sources. The general syntax for AmosQL queries is:

select <result>
from <domain specifications>
where <condition>

Each domain specification associates a query variable with a type
where the variable is universally quantified over the extent of the
type, including indefinite extents as integers with some restrictions.
This is different to SQL where variables range over tuples in tables.

A query compiler translates AmosQL statements into object cal-
culus and algebra expressions in an internal simple logic based lan-
guage called ObjectLog [23], which is an OO dialect of Datalog
where predicates are typed and can be overloaded.

Since ObjectLog is used internally by Amos II it is relatively
easy to translate RDF-QEL-i into AmosQL. However, certain con-
ventions need to be introduced to, e.g., RDF-QEL-1 in order for
the translation to be straight-forward: typesof predicates where
the second argument denotes types must be inserted first in rules,
RDF properties cannot be overloaded, but name spaces provide a
means to make them unique. It is thus no problem to represent RDF
properties as stored functions in Amos II, and RDF-specific meta-
resources, e.g. classes and properties are mapped to corresponding
Amos II types. AmosQL does not permit recursive views; instead
a transitive closure meta-function is provided to handle most situa-
tions requiring recursive views.

6. REGISTRATION SERVICE AND
QUERY MEDIATORS

The wrapper-mediator approach introduced in [38], divides the
functionality of a data integration system into two kinds of subsys-
tems. The wrappers provide access to the data in the data sources
using a common data model (CDM) and a common query lan-
guage. The mediators provide coherent views of the data in the
data sources by performing semantic reconciliation of the CDM
data representations provided by the wrappers. Both common data
model (ECDM) and common query language for the Edutella net-
work have been defined in this paper.

To mediate distributed data sources we are using a two-layered
approach: Simple ’wrapping’ mediators distribute queries to the
appropriate peer with the restriction that queries can be answered
completely by one Edutella peer. Complex ’integrating’ mediators
are able to mediate distributed queries over multiple repositories.
The query syntax to queries to both kinds of mediator will be iden-
tical in both cases.

6.1 Simple Wrapping Mediators
The first layer of functionality for distributed queries in the

Edutella network will be based on simple query hubs and wrap-
ping mediation. While query hubs might have some wrapping ca-
pability, our prototype peers will use them only as registration and
query distribution peers using the Edutella common data and query
model, and implement wrapping capability (to and from the com-
mon model) locally within the Edutella peer wrappers as discussed
in Section 4.4. Thus, each Edutella peer offers a common query
interface based on the common model (possibly at different levels
as defined by RDF-QEL-i) to the network.

Registration of peer query capabilities is based on (instantiated)
property statements and schema information, telling the network,
which kind of schema the peer uses, with some possible value
constraints (select conditions). These registration messages have
the same syntax as RDF-QEL-1 queries, which are sent from the
peer to the registration / query distribution hub. Additionally, the
peer announces to the hub, which query level it can handel (RDF-
QEL-1, RDF-QEL-2, etc.) Whenever the hub receives queries, it
uses these registrations to forward queries to the appropriate peers,
merges the results, and sends them back as one result set.

6.2 Mediator Peers handle Distributed
Queries

The second layer introduces query mediators or query hubs.
These mediators bring in the extra intelligence required to assemble
distributed and heterogeneous queries. These more complex medi-
ators submit subqueries to different repositories that might be able
to answer them, collect the sub-results, join and reconcile them,
and again return the outcome to the client.



Several mediator servers will be available communicating
through JXTA. Each mediator server has its own mediator meta-
data schema and accesses meta-data from other mediators or data
sources. The views provided through the integrating mediators are
transparently queryable using RDF-QEL-i.

In Amos II each mediator server appears as a virtual database
layer having object-oriented data abstractions and query lan-
guage. Object-oriented views provide transparent access to the data
sources from clients and other mediator servers. Conflicts and over-
laps between similar real-world entities being modeled differently
in different data sources are reconciled through the mediation prim-
itives [16, 17] of Amos II which are translated to ObjectLog. The
mediation services allow transparent access to similar object struc-
tures represented differently in different data sources.

The representation of integrating mediators in RDF requires a
richer data model than what is currently available in RDF or RDF-
Schema. Alternatively various conventions can be introduced in the
RDF-based meta-data definitions, e.g. some convention is needed
on how to represent type annotated and generic Datalog rules, since
ObjectLog rules can be overloaded on types. A somewhat inele-
gant way would be to use different name spaces for this but type
annotated properties seem more convenient. Second, RDF cur-
rently does not have views and can therefore not represent medi-
ators that join data from different sources. Named RDF-QEL-i
queries would provide a way to specify views. Derived Amos II
functions would correspond to derived properties defined as named
RDF-QEL-i queries. Third, the mediation primitives for reconcil-
ing overlapping and conflicting information in data sources need
RDF bindings.

Mediators can cooperate by being defined in terms of other medi-
ators, i.e. the mediators are composable [15, 33]. The composition
of mediators allows for modularity and reuse of the view defini-
tions while avoiding the administrative and performance bottleneck
of having a single mediator system with a global schema. Differ-
ent interconnecting topologies can be used to compose mediator
servers depending on the integration requirements.

7. PROTOTYPE SCENARIO
Our current prototype setup features a set of (already existing)

peers, which we have extended with the appropriate Edutella wrap-
pers, and which connect to the Edutella framework with the follow-
ing functionalities: local query (directly to repository), distributed
query (mediated by a simple wrapper mediator and by an AMOS II
mediator peer) and update (through annotation peer).

The following peers can be connected to the Edutella network us-
ing the Edutella wrapper libraries: OLR Repository peer [7], based
on subset of IMS/LOM metadata, will be able to translate from
RDF-QEL-3 into internal query language SQL, return results in
specified result format, DbXML peer [32], as a prototype for an
XML-DB, based on subset of subset of IMS/LOM metadata, using
a simple mapping service to translate from RDF-QEL-1 queries
to Xpath queries over the appropriate XML-LOM schema, AMOS
II peer (with local repository) [33], translate from RDF-QEL-3
into AmosQL, Simple query and registration hub, distribute queries
based on schema information and query capabilities, Complex me-
diation peer, mediate queries on AMOS II based mediation, uses
one AMOS II peer and one OLR repository peer, Graphical query
interface peer based on Conzilla [30], take a graph, and trans-
late it to a query expression, which then can be pushed into the
Edutella network, visualize results, with RDF-QEL-1 and RDF-
QEL-2 functionality JXTA shell peer as well as textual interface
implemented via servlet, for direct query input in RDF-QEL-3, An-
notation peer based on Ontomat [11], query a repository with a

query, update/annotate the results, write them back to the reposi-
tory, KAON-Server10, formerly OntoBroker, see also [25], Storage
and computation peer with Datalog capabilities for RDFS and O-
Telos-RDF ([29], based on ConceptBase Server [14]), and a File
based repository peer based on the JENA toolkit, with the corre-
sponding query language RDQL [27], which stores its RDF data in
files.

All source code of the Edutella implementation can be down-
loaded from the Edutella Project Page.

8. SUMMARY AND ACKNOWLEDGE-
MENTS

While in the server/client-based environment of the World Wide
Web metadata are useful and important, for P2P environments
metadata are absolutely crucial, in order to describe the resources
managed by these peers. So far, P2P applications have used domain
specific formats and metadata schemas, leading to a fragmentation
of the P2P worlds into niche markets.

In this paper, we have described the current status of the Edutella
project, which addresses these shortcomings of current P2P ap-
plications by building on the W3C metadata standard RDF. The
project is a multi-staged effort to scope, specify, architect and im-
plement an RDF-based metadata infrastructure for P2P-networks
based on the recently announced JXTA framework. We have de-
scribed the main architecture and services provided by the Edutella
framework, and have discussed in detail the Edutella query service,
which defines a common query exchange model and language used
to exchange queries and query results between Edutella peers. We
have further discussed the basic registration and mediation services
for distributed queries

Our vision is to provide the metadata services needed to enable
interoperability between heterogeneous JXTA applications. Our
first application will focus on a P2P network for the exchange of
educational resources, and we have described the prototype envi-
ronment we are using to test the Edutella framework. This proto-
type environment will be up and running at the end of this year,
further work will concentrate on refining the existing architecture
and scalability of the Edutella network and add further kinds of
peers and services to the network.

Acknowledgements. This paper is based on a lot of fruitful dis-
cussions with participants within the PADLR projects. We espe-
cially want to thank Steffen Staab and Raphael Volz from AIFB,
Wolf Siberski, Martin Wolpers and Hadhami Dhraief from KBS,
and Gustav Neumann and Bernd Simon from Vienna.

9. REFERENCES
[1] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on

the Web. Morgan Kaufmann Publishers, 2000.
[2] Dan Brickley and R. V. Guha. W3C Resource Description

Framework (RDF) Schema Specification.
http://www.w3.org/TR/1998/WD-rdf-schema/, March 2000.
W3C Candidate Recommendation.

[3] Jeen Broekstra. RQL Tutoria: Babysteps in Sesame RQL.
Aidministrator Nederland, September 2001. Version 0.5.

[4] James Clark and Steve deRose. XML Path Language
(XPath), version 1.0. Technical report, W3C, November
1999. W3C Recommendation.

[5] IEEE Learning Technology Standards Committee. IEEE
LOM Working Draft 6.1.
http://ltsc.ieee.org/wg12/index.html, April 2001.

���

http://kaon.aifb.uni-karlsruhe.de/



[6] dbXML Group. dbxml native database.
http://www.dbXML.org/.

[7] Hadhami Dhraief, Wolfgang Nejdl, Boris Wolf, and Martin
Wolpers. Open learning repositories and metadata modeling.
In International Semantic Web Working Symposium (SWWS),
Stanford, CA, July 2001.

[8] Rael Dornfest and Dan Brickley. The power of metadata.
http://www.openp2p.com/pub/a/p2p/2001/01/18/metadata.html,
January 2001. excerpted from the book ”Peer-to-Peer:
Harnessing the Power of Disruptive Technologies.

[9] The Edutella Project. http://edutella.jxta.org/.
[10] Li Gong. Project JXTA: A technology overview. Technical

report, SUN Microsystems, April 2001.
http://www.jxta.org/project/www/docs/TechOverview.pdf.

[11] Siegfried Handschuh and Steffen Staab. Authoring and
annotation of web pages in cream. In Proceedings of
WWW-2002. ACM Press, 2002.

[12] Pat Hayes. Rdf model theory. Technical report, W3C
Working Draft, September 2001.

[13] IMS Global Learning Consortium Inc. IMS Learning
Resource Metadata Specification v1.2.1.
http://www.imsproject.org/metadata/index.html.

[14] M. Jarke, R. Gallersdörfer, M. Jeusfeld, M. Staudt, and
S. Eherer. ConceptBase - a deductive object base for meta
data management. Journal on Intelligent Information
Systems, 4(2):167 – 192, 1995.

[15] V. Josifovski, T. Katchaounov, and T. Risch. Optimizing
queries in distributed and composable mediators. In 4th
Conference on Cooperative Information Systems, CoopIS’99,
pages 435 – 446, Edinburgh, Scotland, September 1999.
http://www.dis.uu.se/ udbl/publ/coopis99.pdf.

[16] V. Josifovski and T. Risch. Functional query optimization
over object-oriented views for data integration. Journal of
Intelligent Information Systems (JIIS), 12(2-3):165 – 190,
1999.

[17] V. Josifovski and T. Risch. Integrating heterogeneous
overlapping databases through object-oriented
transformations. In 25th Conf. on Very Large Databases
(VLDB’99), pages 435 – 446, Edinburgh, Scotland,
September 1999. http://www.dis.uu.se/ udbl/publ/vldb99.pdf.

[18] Project JXTA Homepage. http://www.jxta.org/.
[19] G. Karvounarakis, V. Christophides, D. Plexousakis, and

S. Alexaki. Querying community web portals, 2001.
Available at http://www.ics.forth.gr/proj/isst/RDF/RQL/,
2001. Submitted for publication.

[20] Michael Kifer, Georg Lausen, and James Wu. Logical
foundations of object-oriented and frame-based languages.
Journal of the ACM, 42(4):741–843, 1995.

[21] Stefan Kokkelink and Roland Schwänzl. Expressing
Qualified Dublin Core in RDF/XML. DCMI, August 2001.
http://dublincore.org/documents/2001/08/29/dcq-rdf-xml/.

[22] Ora Lassila and Ralph R. Swick. W3C Resource Description
framework (RDF) Model and Syntax Specification.
http://www.w3.org/TR/REC-rdf-syntax/, February 1999.
W3C Recommendation.

[23] W. Litwin and T. Risch. Main memory oriented optimization
of oo queries using typed datalog with foreign predicates.
IEEE Transactions on Knowledge and Data Engineering,
4(6):517 – 528, 1992.

[24] J. W. Lloyd and R. W. Topor. Making prolog more
expressive. Journal of Logic Programming, 3:225–240, 1984.

[25] A. Mädche, S. Staab, R. Studer, Y. Sure, and R. Volz. Seal -
tying up information integration and web site management
by ontologies. IEEE Data Engineering Bulletin, March 2002.
http://www.aifb.uni-
karlsruhe.de/ sst/Research/Publications/data-engineering-
bulletin2002.pdf.

[26] D. Maier. A logic for objects. In Workshop on Foundations of
Deductive Databases and Logic Programming, pages 6–26,
1986.

[27] Brian McBride. Jena: Implementing the rdf model and
syntax specification. Technical report, Hewlett Packard
Laboratories, Bristol, UK, 2000.
http://www.hpl.hp.com/semweb/index.html.

[28] Sergey Melnik. RDF API Draft, January 2001.
http://www-db.stanford.edu/ melnik/rdf/api.html.

[29] Wolfgang Nejdl, Hadhami Dhraief, and Martin Wolpers.
O-telos-rdf: A resource description format with enhanced
meta-modeling functionalities based on o-telos. In Workshop
on Knowledge Markup and Semantic Annotation at the First
International Conference on Knowledge Capture
(K-CAP’2001), Victoria, BC, Canada, October 2001.

[30] Mikael Nilsson and Matthias Palmér. Conzilla - towards a
concept browser. Technical Report CID-53,
TRITA-NA-D9911, Department of Numeri-
cal Analysis and Computing Science, KTH, Stockholm, 1999.
http://kmr.nada.kth.se/papers/ConceptualBrowsing/cid 53.pdf.

[31] T.C. Przymusinski. Every logic program has a natural
stratification and an iterated least fixed point model. In
Proceedings of the ACM Symposium on Principle of
Database Systems (PODS), pages 11–21, 1989.

[32] Changtao Qu and Wolfgang Nejdl. Towards interoperability
and reusability of learning resources: A SCORM-conformant
courseware for computer science education. Technical report,
Learning Lab Lower Saxony, University of Hannover,
October 2001.

[33] T. Risch and V. Josifovski. Distributed data integration by
object-oriented mediator servers. Concurrency and
Computation: Practice and Experience, 13(11):933 – 953,
2001.

[34] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan.
Database Systems Concepts. McGraw-Hill Higher
Education, 4 edition, 2001.

[35] Michael Sintek and Stefan Decker. TRIPLE—An RDF
query, inference, and transformation language. In Deductive
Databases and Knowledge Management (DDLP’2001),
October 2001.
http://www.dfki.uni-kl.de/frodo/triple/TripleReport.pdf.

[36] SUN Microsystems. JXTA v1.0 Protocols Specification,
2001. http://spec.jxta.org/v1.0/docbook/JXTAProtocols.html.

[37] ADL Technical Team. SCORM Specification v1.2.
http://www.adlnet.org/Scorm/scorm.cfm, October 2001.

[38] G. Wiederhold. Mediators in the architecture of future
information systems. IEEE Computer, 25(3):38 – 49, 1992.


