The SCAM Framework: Helping Semantic Web
Applications to Store and Access Metadata

Matthias Palmér, Ambjorn Naeve, and Fredrik Paulsson

KMR group at CID/KTH (Royal Institute of Technology)
Lindstedtsvégen 5
100 44 Stockholm, Sweden
{matthias,amb,frepa}@nada.kth.se

Abstract. In this paper we discuss the design of the SCAM framework,
which aims to simplify the storage and access of metadata for a variety
of different applications that can be built on top of it. A basic design
principle of SCAM is the aggregation of metadata into two kinds of sets
of different granularity (SCAM records and SCAM contexts). These sets
correspond to the typical access needs of an application with regard to
metadata, and they constitute the foundation upon which access control
is provided.

1 Introduction

The web of today is by far the largest source of information ever created by
man. However, the information about this information, its metadata, is not
well-structured, which leads to the well-known difficulties in finding what one
is looking for. The semantic web is an international effort to improve this situ-
ation by providing machine-interpretable expressions for relations between and
statements about a variety of resources.

However, the strength of the semantic web approach will not be fully apparent
until all resource producers — large as well as small — will express information
about these resources as a natural part of the creation process. In order for
this to happen, they must be stimulated to supply the neccessary information,
which requires not only good technology but also convenient and user-friendly
metadata applications that cater to existing needs.

A necessary requirement for such applications is a good metadata storage
system, where metadata is accessed, i.e. created, stored, retrieved and updated.
The kind of access that is provided has an important impact on the simplicity and
the efficiency of the application. Moreover, the kind of access that would be most
helpful for an application depends on the choice and usage of metadata, which in
turn is a consequence of the purpose of the application. Hence, when defining a
framework that will support many different applications the granularity of access
cannot be tied to a specific metadata standard.

There are many storage systems for semantic web metadata, for instance
Sesame [L1], RDFSuite [6] and Redland [9]. These systems [§ focus on supporting



RDF Schema [10], on effective query capabilities, inference, as well as on how
to store large quantities of metadata. However, as described in section Bl there
are several aspects of metadata access that these systems do not address.

In this paper we describe the design of the Standardized Contextualized Ac-
cess to Metadata(SCAM ﬂ framework that provides a basis upon which different
applications can be built [23]. The SCAM framework is developed as an open
source project and it supports applications in storing and accessing metadata.
The design of SCAM is derived mainly from the demands of applications such
as archives and personal portfolios. Most prominently, SCAM provides access
to sets of semantic web metadata, i.e. not to individual triples but to sets of
triples. Like other storage systems, SCAM also provides search capabilities. To
help applications protect the integrity of the metadata, basic access control is
provided.

In Section 2, we briefly discuss the SCAM framework from a more technical
perspective in order to provide a setting for the specific design issues discussed
in this paper. In Section 3 we look at the basic system design of SCAM, starting
by listing the requirements behind it. In Section 4, the issue of metametadata is
treated. In Section 5, we present two specific applications that have been built
upon SCAM and how they make use of the functionality. Finally, in Section 6
we provide a conclusion and future work.

2 The SCAM Framework

In this section we will see how the SCAM framework is implemented as a J 2EFH
application using the J Bosd] platform. There is documentation on its homepag
where more technical details can be found. SCAM can be divided into the repos-
itory, the metadata storage and the middleware, where the application logic is
placed.

2.1 Repository

The repository relies on Jena2 [3] as a triple store, which in turn connects to
various Relational Database back-ends. The following five Enterprise Java Beans
(EJB) provide all the functionality of the repository.

— AdministerBean — supports the administration of SCAM. Through
this bean users, groups (see Section B0l and containers for metadata are
administered.

— StoreBean — supports the access to metadata sets. The access to
metadata records and containers of records are discussed in detail in Section

B3 and B4

! The previous full name of SCAM, Standardized Content Archiving Management wich
occurs in previous publications, was changed since it was slightly misleading.

2 Java 2 Platform, Enterprise Edition (J2EE).

3 JBoss is an application server http://www. jboss.org/index.html

4http://scam.sourceforge.net


http://www.jboss.org/index.html
http://scam.sourceforge.net

— SearchBean — supports the querying of metadata sets The query
capabilities are discussed in Section B6

— ManifestBean — supports the organization of resources Many ap-
plications need to provide hierarchical views of resources. We have chosen
to implement support for a specific kind of organization, the metadata part
of IMS Content Packaging [2], mainly because of its wide acceptance in the
learning community. To be able to store the IMS content packaging metadata
within SCAM, we have implemented a RDF-binding for it.

— ContentBean — supports the storage of content The ContentBean
provides some useful functionality for handling content together with its as-
sociated metadata. With content we mean only those digital representations
of resources that are administered within SCAM. Using the ContentBean, a
simplified WebDAV [15] has been implemented, where the content resources
are accessed in accordance with the IMS Content Packaging hierarchy de-
scribed above.

2.2 Middleware

The main purpose of the middleware is to provide HT'TP access to the repository.
In fact, it is suitable to consider SCAM as a Model View Controller (MVC) ap-
plication framework [24], where the repository is the model and the middleware
provides the view and controller. The configurable controller that SCAM pro-
vides is somewhat similar to the Struts frameworkl]. We are considering moving
towards a more widely spread solution such as Struts or more recent initiatives
such as JavaServer Faced]. The view has to be defined by individual applica-
tions that build on SCAM by using JavaServer Pages and Taglibsﬂ. Some wutility
taglibs are provided in order to simplify the management of metadata. One of
the utility taglibs is a metadata form generator. The forms can be configured to
be either presentations or editors for metadata — according to a specific appli-
cation profile. This configurable form system is called SHAM]@, and is briefly
discussed in [I3]. A more detailed report on the SHAME system is in progress.

Stand-alone applications work directly against the repository, and hence ig-
nore the middleware altogether. Here we will not consider the middleware fur-
ther. We refer to the SCAM homepage for its documentation.

3 Basic System Design

In this section we will discuss what constitutes the basic design of the frame-
work, i.e. the management of metadata. This corresponds to AdministerBean,

5 A framework for building java web applications can be found at
http://jakarta.apache.org/struts

6 http://java.sun.com/j2ee/javaserverfaces

" Taglibs are a part of the JavaServer Pages, which can be found at
http://java.sun.com/products/jsp

8 Standardized Hyper-Adaptable Metadata Editor


http://jakarta.apache.org/struts
http://java.sun.com/j2ee/javaserverfaces
http://java.sun.com/products/jsp

StoreBean and SearchBean in the repository part of SCAM. We will begin by
listing the requirements. Each requirement will then be analyzed, together with
the corresponding design decisions.

3.1 Functional Requirements

Since the SCAM system is a framework upon which several different types of
applications can be built, the design should support, but not be limited to,
individual applications. However, the requirements that motivate the design have
been inspired by practical needs, most prominently by the needs of archiving
and personal portfolio applications. In such applications many users express
metadata around individual resources in a web-like environment. The metadata
is then provided through various interfaces, typically via exploration or search.
Furthermore, the metadata is allowed to change often, not only updated but
entirely new metadata constructs are allowed to be added on the fly.
The six requirements below will be treated in the following subsections.

1. SCAM should be independent of application profiles, i.e. not be limited to a
set of metadata elements adapted to the needs of a specific community.

2. SCAM should support the ability to work with metadata records, i.e. to work
with metadata centered around individual resources.

3. SCAM should support the administration and separation of metadata be-
tween different contexts. Specifically, contexts should:

(a) provide simple mechanisms for exchanging metadata with other systems,
e.g. another SCAM system, another metadata management system, an
external storage system.

(b) allow the expression of different opinions that if kept together would be
inconsistent.

4. SCAM should support access control of both metadata records and contexts.
. SCAM should provide search capabilities of metadata records.
6. SCAM should provide support for vocabularies.

ot

Before continuing let us consider some existing RDF stores with respect to
these requirements. RDFSuite [6] fails to fulfill 1 (since it can only store state-
ments if there is a schema), as well as 2, 3 and 4 (since there is only one RDF
model to upload statements into), but it does manage 5. Redland [9], Sesame
[1] and Jenal3] fulfill 1, 3, and 5 more or less directly. Since SCAM builds
on Jena and fulfills 2, 4 and to some extent 6 via conventions and algorithms,
SCAM could in principle be built on top of either Sesame or Redland. This would
probably result in a similar amount of work.

3.2 Independence of Application Profiles

The concept of an application profile has been developed and clarified over time.
We have chosen to follow the definition in [I2]:



“An application profile is an assemblage of metadata elements se-
lected from one or more metadata schemas and combined in a compound
schema. Application profiles provide the means to express principles of
modularity and extensibility. The purpose of an application profile is to
adapt or combine existing schemas into a package that is tailored to the
functional requirements of a particular application, while retaining inter-
operability with the original base schemas. Part of such an adaptation
may include the elaboration of local metadata elements that have impor-
tance in a given community or organization, but which are not expected
to be important in a wider context.”

We think that the use of the expression “metadata schema” is somewhat too
general for our discussion around application profiles. Therefore, from now on, we
will use the more narrow expression metadata standard, which will refer only to
metadata schemas with well defined sets of metadata elements — as introduced by
specific standardization bodies. Two examples of metadata standards are Dublin
Core [5] and IEEE/LOM [I7]. An example of an application profile is CanCore
[1], which uses metadata elements from the metadata standard IEEE/LOM.

Since the intention with SCAM is to be independent of application profiles,
which may collect metadata elements from several metadata standards, we argue
that SCAM should be independent of metadata standards as well. This is not
only a technical consequence, but reflects our firm belief in the benefits of a mul-
titude of independently developed metadata standards and application profiles
covering different needs. It is not an option to wait for this diversity to be incor-
porated as extensions to one fundamental metadata standard. Hence, choosing
any specific metadata standard today (or at any specific point in time) would
limit the expressibility of the applications built upon SCAM.

In our design of SCAM, we have discarded the approach to support several
metadata standards separately, and more specific application profiles on top of
those, since this will either create numerous problems with incomplete metadata
records or result in a “combinatorial explosion” of the many translations between
them.

Instead we have chosen a solution offered by semantic web technology, more
specifically by RDF(S) [16] [T0], which provides a common meta-model, within
which metadata elements — and hence metadata standards — can be expressed
with well defined syntax and semantics. The choice of RDF is perhaps best
motivated when it comes to defining application profiles in terms of combina-
tions and reuse of bits and pieces from previously existing application profiles
and metadata standards. This is supported by the fact that the RDF-bindings
of major metadata standards — such as e.g. IEEE/LOM and Dublin Core —
are specifically designed in order to allow such combinations and reuse of their
constituent parts.

Today there already exists RDF bindings of Dublin Core and vCard and the
RDF binding[20)] of IEEE/LOM is nearly finished. These three metadata stan-
dards have provided the basic building blocks from which we have constructed
the various application profiles on top of SCAM. When these “standard building



blocks” have been unable to provide sufficient expressive power, we have invented
new metadata constructs or — if possible — extended the existing ones via the
RDF vocabulary description language (RDFS).

3.3 SCAM records

We have defined SCAM records so they are suitable for managing the metadata
of a single resource, independently of which application profile that is used.
With “manage” we here mean create, update, store, retrieve or present an entire
metadata record. A prerequisite requirement has been that the granularity of a
SCAM record should be comparable to that of the document-centric approach
for exchanging metadata records of a fixed application profile.

A SCAM record is defined to be the anonymous closure of a RDF graph
computed from a given non-anonymous RDF resource. The anonymous closure
is computed by following chains in the natural direction, from subject to object,
of statements until a non-anonymous RDF resource or RDF Literal is found.
Furthermore, each anonymous resource is not allowed to occur in more than one
SCAM record. Any anonymous resource that fails to follow this requirement is
duplicated when imported into SCAM. Within a RDF graph, a SCAM record
is uniquely identified by the URI-reference of the non-anonymous RDF resource
from which the anonymous closure is computed.

SCAM records coincide — except with respect to reifications — with Concise
Bounded Resource Descriptions as defined in URIQAE.

URIQA also defines a retrieval mechanism together for Concise Bounded
Resource Descriptions, forcing them to always be retrieved from an authoritative
server, i.e. the server specified by the host part of the resource’s URI-reference.
This approach does only allow one set of metadata for a specific resource, clearly
conflicting with the idea of a metadata ecosystem as presented in [21]. Hence,
even though we could implement the URIQA protocol on top of SCAM, this
is not a preferred way to go, since it would only allow access to a subset of all
SCAM records on a given server.

In fact we have chosen not to commit SCAM to a specific protocol for ac-
cessing SCAM records since there is no mature standards for this yet. We are
keeping a close watch on initiatives such as URIQA, the RDF WebAPI in Joseki
M) and the metadata retrieval support in WebDAV [T5].

These SCAM records have several useful properties:

1. In terms of RDF statements, SCAM records are always well-defined and

disjoint, which avoids problems when updating, removing etc.

2. SCAM records connect the administration of metadata constructs with things
that have a public identifier. This means that things that have no identifier
cannot be administered on their own.

. SCAM records with different identifiers can co-exist in the same RDF graph.

4. RDF query engines need not respect the borders of SCAM records, which

allows more advanced queries.

w

9 The URI Query Agent Model, see http://sw.nokia.com/uriqa/URIQA.html


http://sw.nokia.com/uriqa/URIQA.html

5. SCAM records have a granularity for management that matches most appli-
cation profiles, such as LOM, Dublin Core etc.

A drawback of SCAM records is that there are RDF graphs that aren’t acces-
sible or expressible. For example, a statement with an anonymous resource as
subject that does not occur anywhere else and with a non-anonymous resource
as object cannot be reached through SCAM records. There are also statements —
potentially small graphs — that consist solely of anonymous RDF resources and
RDF literals that simply have no natural connections to any SCAM records.

From a more practical perspective, statements that might be interesting to
include in a SCAM record include anonymous reifications, as a way to express
metametadata about individual statements. See Section Hl for a more thorough
discussion of reifications and metametadata.

3.4 SCAM Contexts

When administrating a SCAM system, it is often not enough to work on the
level of SCAM records, simply because they are of too small granularity. For
example, many common administrative operations would involve hundreds or
thousands of SCAM records. Hence, we introduce a SCAM context to denote
a set of SCAM records that somehow belong together. Exactly which SCAM
records that belong together depends on the application at hand.

Another requirement on SCAM is to allow several SCAM records for the
same resource. We will call such SCAM records siblings. For example, an appli-
cation serving many users may contain several different opinions about the same
resource; opinions that will have to be kept separate if metametadata about their
origin are to be preserved, e.g. access rights, author etc. To be able to refer to
individual siblings, we need — apart from the resource — some kind of marker to
distinguish them.

Now, with knowledge about SCAM records, siblings and SCAM contexts, let
us take a closer look at how we actually store them as RDF graphs in SCAM.
We have considered three basic approaches:

1. Keep all SCAM records together in one RDF graph and use some markers
telling what SCAM contexts they belong to.

2. Keep all SCAM records belonging to the same SCAM context together in
one RDF graph.

3. Keep every SCAM record in a separate RDF graph and use some marker to
tell what SCAM contexts that the SCAM record belongs to.

The first approach is immediately disqualified since it does not allow siblings.
The second approach allows siblings but forces them to be in separate SCAM
context. Consequently, all SCAM records are uniquely identified within a SCAM
context, no separate marker is needed. The last approach opens up for having
several siblings within a single SCAM context. A separate marker is needed to
distinguish siblings.



We have chosen the second approach, where SCAM contexts contain only
one sibling for a single resource. This has the advantage of being simple and no
extra marker is needed. See Figure [l for a illustration of how SCAM contexts and
SCAM records relate. On the other hand it is clear that this choice is a limitation
on the use of siblings in SCAM contexts. However, without this limitation a
SCAM context cannot always be collected into a single RDF graph. The reason
is that if you want to preserve the integrity of siblings in a single RDF graph,
triples have to be reified and be ’owned’ by one or several SCAM contexts. To
be ’owned’ would have to be expressed on the reifications by some property that
is yet to be invented. Hence, we would end up with a situation where import
and export of metadata would either be non standardized — via ownership on
reifications — or more complicated — several RDF graphs would represent a single
SCAM context.

SCAM-repository

SCAM-context 1 SCAM-context 2

{ dc:title -

SCAM-record C

ot (Lianglesfen

Euclids Algorithm fen|

SCAM-record D

Euklides Algoritm Jsv|

Fig.1. A SCAM repository has SCAM contexts as separate RDF graphs, which
are further divided via the anonymous closure algorithm into SCAM records.
SCAM records A and C are siblings since they both express metadata for a
resource identified via the URI reference URII.

3.5 Access Control Lists

SCAM provides access control on all SCAM records. The access control is fo-
cused on the access to the metadata in the SCAM record and, if present, to
the resources that are described therein. We use a form of Access Control Lists



(ACL) for describing the rights. Our solution is inspired by — but not derived
from — ACLs in file systems such as NTFE{@, AF] ete. In the future we will
take a closer look at the access control protocol specified by WebDAV [15] and
initiatives for expressing ACLs in RDF such as W3C ACLg4.

The basic functionality of an Access Control List is simple. It provides a
list of principals, i.e. users or roles, paired with intended rights. For SCAM the
access control list states the access rights and user privileges only in terms of
right to read and/or write. Other rights might be considered, e.g. the right to
lock, change metametadata etc. Due to performance and complexity reasons, in
the current representation there is no negation of permissions.

Currently SCAM only supports groups for roles. The groups in SCAM can
be defined by how they relate to the users:

1. Every user belongs to a set of groups.

2. Groups are defined by which users they contain, no empty groups are allowed,
which means that you have to define some users before you introduce the
groups they should belong to.

3. Groups cannot be defined in terms of other groups.

Even though SCAM currently is limited to groups, the representation of the
ACLs could as well be used for expressing things like Role-Based Access Control
(RBAC) as defined in [I4]. See [ for a comparison between RBAC and the more
basic approach of ACLs that we have chosen for SCAM. RBAC was not chosen
for SCAM, since it was deemed unnecessarily complicated for our current needs.
More specifically:

1. Tt was required that access should be possible to grant to individual users
without creating a role for every user.

2. It was not required to support the change between sessions of roles assigned
to a user. For example, the ability of the same user to log in as an adminis-
trator or a regular user depending on the situation was not a requirement.

Another — somewhat independent — restriction is that a SCAM context must
always be “owned” by a principal, i.e. a user or a group. A user will have all
permissions on all SCAM records in a SCAM context, if either the user is the
owner of that context, or the owner is a group and the user belongs to that group.
Furthermore, there are two principals in SCAM who have special meaning, the
“Administrator” and the “Guest”. The group Administrator always overrides the
access control, which means that all users in that group has the permission
to perform “everything”. A Guest is a fictional principal that is used by un-
authenticated users. If the Guest is included in an ACL it means that everyone
has the given permission.

10 NTFS is the Windows NT file system developed by Microsoft.

11 Andrew File System is a distributed file system developed at Carnegie-Mellon Uni-
versity.

12 http: //www.w3.org/2001/04/20-ACLs


http://www.w3.org/2001/04/20-ACLs

Since the SCAM records are represented in RDF, we have chosen to express
the ACLs in RDF as well. Figure B shows the RDF structure of an ACL in
SCAM.

SCAM-context owned by “peter”

I acl:acl

SCAM-record A

acl:read
acl:read

acl:read

acl:write

Fig. 2. A user named peter is the owner of the SCAM context and consequently
has full access rights to the SCAM records within it. All the other principals
e.g. will, 7ill and teacher have read-access, in addition jill also has write-access.

The ACL RDF graph is expressed via an anonymous resource, which allows
it to be automatically included into the corresponding SCAM record. The se-
mantics of pointing to the ACL directly from the resource is somewhat dubious
(see our discussion on metametadata in Section H).

3.6 Queries

In order to support queries against metadata, we had to make some “strategic
decisions” concerning the following two questions:

1. Against what portions of metadata should the queries be allowed to execute?
2. What query languages and result types should be supported?

In response to the first question, we have chosen to allow queries to be executed
against one SCAM context at a time — or all SCAM contexts at once. To search
against several — but not all - SCAM contexts at once is not supported (due to
technical limitations that we expect to be able to overcome soon). Another tech-
nical limitation has forced us to skip the check for access restrictions expressed
in the ACLs when executing the search.



In response to the second question, we have chosen to support simple free-text
search, RDQL [I8] and QEL [22].

The two first query languages are motivated by the fact that typical appli-
cations provide two levels of search, first simple free-text search and second, a
more advanced search on specific metadata elements. With free-text search we
mean sub-string matching of literals — disregarding which metadata elements
they belong to. Strictly speaking, free-text search does not require a special
treatment, since it can be expressed in the other query languages, rather it is
provided for simplicity and efficiency reasons. Until recently, advanced search has
been achieved through the use of RDQL, a rather restricted SQL-like language
that nevertheless is expressive enough to perform most simple tasks. The reason
for supporting RDQL is because it is the query language supported by Jena2,
which is the RDF API we have used internally. QEL is a very powerful datalog-
like language that is part of the Edutella project [I9] which aims to provide
a peer to peer network where semantic web metadata can be searched for. The
QEL language is quite powerful, it provides conjunction, disjunction, rules, outer
join, built in predicates — linear and general recursion. The implementation that
SCAM uses does not yet support linear and general recursion.

With support for QEL, metadata in individual SCAM repositories can be
made searchable over Edutella and consequently discovered by people without
previous knowledge of the systems location. We foresee that QEL will to some
extent replace RDQL for doing local searches as well.

3.7 Support for Vocabularies

Most applications make use of vocabularies. In many cases queries and graphical
user interfaces require the presence of such vocabularies in order to work as ex-
pected. The obvious design, to keep vocabularies together with other metadata,
is seldom preferable since it complicates administration and update. SCAM con-
texts dedicated for managing one or several vocabularies is probably a better
alternative. A necessary complication is that the query engines would somehow
have to be aware of this. For expressing vocabularies, in most cases RDF Vocab-
ulary Description Language (RDF Schema) is sufficient.

In order to understand class and property hierarchies, support for inference
should be added. Currently we have satisfied such needs by forward chaining (i.e.
calculating and storing implicit triples) in copies of SCAM contexts. The vocab-
ularies have been merged into these copies, and all queries are then executed
against them. This is a temporary design that we are investigating alternatives
for.

4 Support for Metametadata

Metadata is data about data, consequently, metametadata is data about meta-
data. E.g. the date when a SCAM record was created or modified, access control
lists controlling the access to a SCAM record or an entire SCAM context.



In RDF there is a basic mechanism for creating metametadata called reifica-
tion. A reification is a resource that is treated as a placeholder for a statement.
Statements around a reification are implicitly statements around the statement
that has been reified. Furthermore, reified statements can be collected into col-
lections, which provide handles for expressing statements on sets of other state-
ments without repeating them. In principle, reification is very precise — since
it allows you to express statements about any set of statements. Unfortunately,
from a more practical perspective it is a rather clumsy mechanism, especially
if the most common case is to express statements about all the statements in
a RDF graph. (This adds at least 4 new statements for each statement to be
reified).

In our case, we would like to express metametadata around all statements
within every SCAM record. Currently, we express the metametadata directly
on the resource identifying the SCAM record. We realize that the semantics
of such statements may be wrong, and that they may conflict with the chosen
application profile. Lets consider two problematic situations:

1. Metametadata such as the date when a SCAM record was created uses the
Dublin-Core-created property directly attached on the resource. The seman-
tics — as expressed by Dublin Core — says that the resource itself was created
at the specific date, not — as we intended — the SCAM record.

2. Applications — building on SCAM — that manage both metadata and data,
incorrectly let the ACLs apply to the data as well. Unfortunately, the current
design of ACLs carries with it the natural interpretation that they should
apply to the data (content) — and not to the metadata (SCAM record) as
defined. Hence, the ACLs presently used for SCAM records are in the way
for the data-access-controlling ACLs.

Both these situations could be remedied by defining new properties with the
correct semantics. However, this would not allow reuse of existing standardized
metadata elements on the metametadata level.

Instead, we are redesigning SCAM so that metametadata properties apply
to an intermediate anonymous resource pointed to via a 'metametadata’ prop-
erty from the resource identifying the SCAM record. Consequently, ACLs can
be provided on both the metadata and the resource (the latter only when the
resource represents some content that is within the control of the SCAM content
extension system). See Figure Bl for an illustration.

If there is a need to express metametadata at a higher granularity level, there
are several possible solutions. For example, a specific SCAM context can be used
in order to express metametadata on SCAM contexts.

At the other end of the scale, there might be a need for more fine-grained
metametadata. It is quite easy to imagine scenarios where there is a need for
metametadata on specific parts of the SCAM record. For example, the Dublin
Core description property could in some situations need a date of modification
or even a complete version history with information about who the changes was
made by.



Fig. 3. The resource, which can be thought of as a file, has metadata that says
that it is readable by all students, was created “2002-10-09”, is about “mathe-
matics” and has a title that reads “Prime numbers”. The metametadata on the
other hand says that the metadata was created “2003-12-02 and is readable by
everyone.

In this case the right way to go is probably to use reification directly since
the alternative, to invent specific metadata constructs where metametadata is
integrated with the metadata, has as a consequence that established metadata
standards such as Dublin Core and IEEE / LOM cannot be used.

For this to be reasonably efficient, especially in combination with the special
case of version history, there would have to exist specific support in SCAM,
something that has yet to become a priority.

5 Applications

There are currently about ten different applications that have been built upon
SCAME. For example, the SCAM portfolio provides storage of metadata on
resources such as web resources, uploaded files, traditional books or abstract
ideas. The resources can be organized into folders that can be shared with others.
Just as SCAM itself, the SCAM portfolio is not bound to a specific application
profile. Instead there is a configurable web user interface (SHAME) mentioned
above, where editors, exploration view and query interface can be configured.
The aim is to make this configuration so simple that the end-user could create
new application profiles from a toolbox whenever new kinds of resources are
encountered.

13 For a more complete list see SCAM’s homepage http://scam.sourceforge.net


http://scam.sourceforge.net

A SCAM application that has a fixed application profile is the Digital Media
Libmrﬂ of The Swedish Educational Broadcasting Company (UR). The main
goal is to give public access — via a web interface — to rich metadata for all
resources that UR produces. These resources include TV and Radio programs,
series of those, related resources such as teacher tutorials, web sites etc. The re-
sources are expressed as application profiles, where standard metadata elements
and vocabularies are used when possible. We have used, IEEE / LOM, Dublin
Core, DC-terms, VCard plus some national vocabularies regarding educational
material. The interface should provide rich search capabilities as well as possibil-
ities to find related resources via containments in series, explicitly given relations
etc. Searches are performed via vocabularies. The resources, i.e. the programs
themselves, are administered outside of SCAM.

6 Conclusions and Future Work

In this paper we have descibed the design of the SCAM framework which helps
applications to store and access metadata on the semantic web. We have defined
a SCAM record as the anonymous closure from a resource and claim that in most
cases this coincides with how metadata is accessed according to an application
profile. Furthermore we have introduced SCAM contexts as a way to handle
large amounts of SCAM records. SCAM contexts can be imported and exported
as RDF graphs providing a mechanism for backup, communication with other
systems etc. Moreover, we have defined access control on the level of SCAM
records and query capabilities that can either span all SCAM contexts or be
limited to a single SCAM context. We have also seen how different applications
can make use of the SCAM framework for different purposes.

Future work will include support for inference and special treatment of vo-
cabularies / ontologies. We will include specific support for metametadata, which
e.g. will change the way that ACLs are applied. The ACL model will be revised
and extended with e.g. time aspects and authentication by formal deduction
rules. Furthermore, we plan to do a quantitative investigation of SCAM’s per-
formance and storage capabilities.

7 Acknowledgements

We are indepted to Jan Danils and Jéran Stark for their programming efforts
and to Mikael Nilsson for sharing his expertise on metadata standards. The
SCAM project has several stakeholders, the support of which we gratefully ac-
knowledge. Prominent among them are the Swedish National Agency for School
Improvement, the Swedish Educational Broadcasting Company, the Swedish Na-
tional Center for Flexible Learning,Uppsala Learning Lab and the Wallenberg
Global Learning Network. The financial support from Vinnova is also gratefully
acknowledged.

4 http://www.ur.se/mb


http://www.ur.se/mb

References

1.

S CU D

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Canadian  Core Learning Resource  Metadata  Application  Profile.
http://www.cancore.org.

IMS Content Packaging. http://www.imsproject.org/content/packaging,.

Jena - A Semantic Web Framework for Java. http://jena.sourceforge.net!
RDF WebAPI. http://www.joseki.org/protocol.html|

The Dublin Core Metadata Initiative. http://dublincore.org.

S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle.
The ICS-FORTH RDFSuite: Managing Voluminous RDF Description Bases. In
The Second International Workshop on the Semantic Web - SemWeb’2001.

B. Barkley. Comparing simple role based access control models and access control
lists. In Proceedings of the second ACM workshop on Role-Based Access Control,
pages 127-132, Fairfax, Virginia, United States, 1997.

B. Beckett and J. Grant. Mapping Semantic Web Data with RDBMSes.
http://www.w3.o0rg/2001/sw/Europe/reports/scalable_rdbms_mapping_report.
D. Beckett. The Design and Implementation of the Redland RDF Application
Framework. In Proceedings of the tenth World Wide Web Conference, 2001.

D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. http://www.w3.org/TR/2002/WD-rdf-schema-20020430.

J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architecture
for Storing and Querying RDF.

E. Duval, W. Hodgins, S. Sutton, and S.L. Weibel. Metadata Principles and Prac-
ticalities. D-Lib Magazine Vol. 8 No. 4, April 2002.

H.  Eriksson. Query  Management For The Semantic Web.
http://kmr.nada.kth.se/papers/SemanticWeb/CID-216.pdf.

D.F. Ferraiolo and D.R Kuhn. Role Based Access Control. In 15th National
Computer Security Conference, 1992.

Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. HTTP Extensions
for Distributed Authoring — WEBDAV, 1999.

K. Graham and J. J. Carroll. Resource Description Framework (RDF):Concepts
and Abstract Syntax. http://www.w3.org/TR/rdf-concepts.

Learning Technology Standards Comittee of the IEEE:. DraftStandard for Learn-
ing Objects Metadata IEEEP1484.12.1/D6.4, June 2002.

L. Miller, A. Seaborne, and A. Reggiori. Three Implementations of SquishQL, a
Simple RDF Query Language. In Proceedings of the First International Semantic
Web Conference on The Semantic Web, pages 423-435, 2002.

W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmér,
and T. Risch. EDUTELLA: A P2P Networking Infrastructure Based on RDF. In
Proceedings of the 11th World Wide Web Conference, 2002.

M. Nilsson, M. Palmér, and J. Brase. The LOM RDF binding - principles and
implementation. ARTADNE Conference 2003.

M. Nilsson, M. Palmér, and A. Naeve. Semantic Web Meta-data for e-Learning
- Some Architectural Guidelines. In Proceedings of the 11th World Wide Web
Conference, 2002.

M. Nilsson and W. Siberski. RDF Query Exchange Language (QEL) - concepts,
semantics and RDF syntax. http://edutella.jxta.org/spec/qel.html, 2003.
F. Paulsson and A. Naeve. Standardized Content Archive Management — SCAM.
IEEE Learning Technology newsletter Vol 5, Issue 1, January 2003.

Sun Microsystem Inc. Web-Tier Application Framework Design. 2002.

All URLs that are referenced in this paper have been accessed on 2004-01-12.


http://www.cancore.org
http://www.imsproject.org/content/packaging
http://jena.sourceforge.net
http://www.joseki.org/protocol.html
http://dublincore.org
http://www.w3.org/2001/sw/Europe/reports/scalable_rdbms_mapping_report
http://www.w3.org/TR/2002/WD-rdf-schema-20020430
http://kmr.nada.kth.se/papers/SemanticWeb/CID-216.pdf
http://www.w3.org/TR/rdf-concepts
http://edutella.jxta.org/spec/qel.html

	The SCAM Framework: Helping Semantic Web Applications to Store and Access Metadata
	Matthias Palmér cl@@auth, Ambjörn Naeve cl@@auth, Fredrik Paulsson

