
Formalizing Dublin Core Application Profiles �
Description Set Profiles and Graph Constraints

Mikael Nilsson, Alistair J. Miles, Pete Johnston, Fredrik Enoksson

mikael@nilsson.name, A.J.Miles@rl.ac.uk, Pete.Johnston@eduserv.org.uk,
fen@csc.kth.se

Abstract. This paper describes a proposed formalization of the notion of Applica-
tions Profiles as used in the Dublin Core community. The formalization, called
Description Set Profiles, defines syntactical constraints on metadata records con-
forming to the DCMI Abstract Model using an XML syntax. The mapping of this
formalism to syntax-specific constraint languages such as XML Schema is dis-
cussed.

Introduction

The term profile has been widely used to refer to a document that describes
how standards or specifications are deployed to support the requirements of a par-
ticular application, function, community or context, and the term application pro-
file has recently been applied to describe this tailoring of metadata standards by
their implementers (Heery & Patel, 2000).

Since then, the Dublin Core Metadata initiative (DCMI) has published a form-
alization of the Dublin Core metadata model called the DCMI Abstract Model
(Powell et al, 2007), which provides the necessary foundation for a formalization
of application profiles that lends itself to machine processing.

This paper describes a proposed formalization of the notion of Applications
Profiles as used in the Dublin Core community, called � Description Set Profiles� ,
or DSPs. This formalization is simplified by focusing on the core aspect of applic-
ation profiles: the need for syntactically constraining the metadata instances.

2

Dublin Core Application Profiles

As described in the � Singapore Framework for Dublin Core Application Pro-
files� (Singapore Framework, 2008), a DSP is part of a documentation package
for Dublin Core Application Profiles (DCAPs) containing

● Functional requirements, describing the functions that the application
profile is designed to support, as well as functions that are out of scope

● Domain model, defining the basic entities and their relationships using
an formal or informal modeling framework.

● Description Set Profile, as described in this paper

● Usage guidelines, describing how to apply the application profile, how
the used properties are intended to be used in the application context etc.

● Encoding syntax guidelines, defining application profile-specific syn-
taxes, if any.

The DSP thus represents the machine-processable parts of a Dublin Core Ap-
plication Profile.

There are existing attempts at defining a formal model for Dublin Core Applic-
ation Profiles. Two important attempts have been documented in CEN CWA
14855, defining an overarching model for documenting application profiles, and
CEN CWA 15248 that defined a machine-processable model for DCAPs.

These models depend on single-resource model for application profiles, where
the DCAP describes a single resource and its properties. In the light of emerging
multi-entity application profiles such as the Eprints Application Profile (Allinson
et al 2007), where a five-entity model is used, a one-entity DCAP model is clearly
insufficient. Also, earlier attempts at defining DCAPs have not had the benefit of a
formal model for Dublin Core metadata, the DCMI Abstract Model, (Powell et al,
2007).

The Singapore Framework described above is intended to support DCAPs at
the level of complexity represented by the ePrints DCAP.

Description Set Profiles

The DSP model relies on the metadata model defined in the DCMI Abstract
Model and constrains the set of � valid� metadata records. Thus, a DSP defines a
set of metadata records that are valid instances of an application profile. The De-

3

scription Set Profile model is being developed within the Dublin Core Architec-
ture Forum and is in progress of being put forward as a DCMI Working Draft.

The first part of the paper describes the design of the DSP specification in the
context of Dublin Core Application Profiles, uses it is intended to support, and
some examples of applying it to relevant problems. Later in the paper, we discuss
how the approach could be generalized to graph-based metadata such as RDF, and
the potential benefits of such an approach.

The Role of Application Profiles

The process of � profiling� a standard introduces the prospect of a tension
between meeting the demands for efficiency, specificity and localization within
the context of a community or service on the one hand, and maintaining interoper-
ability between communities and services on the other. Furthermore, different
metadata standards may provide different levels of flexibility: some standards may
be quite prescriptive and leave relatively few options for customization; others
may present a broad range of optional features which demand a considerable de-
gree of selection and tailoring for implementation.

It is desirable to be able to use community- or domain-specific metadata stand-
ards � or component parts of those standards � in combination. The implementers
of metadata standards should be able to assemble the components that they require
for some particular set of functions. If that means drawing on components that are
specified within different metadata standards, that should be possible. They should
also be safe in the knowledge that the assembled whole can be interpreted cor-
rectly by independently designed applications. Duval et al (2002) employ the
metaphor of the Lego set to describe this process: an application designer should
be able to � snap together� selected � building blocks� drawn from the � kits�
provided by different metadata standards to build the construction that meets their
requirements, even if the kits that provide those blocks were created quite inde-
pendently.

In a Dublin Core Application Profile, the terms referenced are, as one would
expect, terms of the type described by the DCMI Abstract Model, i.e. a DCAP de-
scribes, for some class of metadata descriptions, which properties are referenced
in statements and how the use of those properties may be constrained by, for ex-
ample, specifying the use of vocabulary encoding schemes and syntax encoding
schemes. The DC notion of the application profile imposes no limitations on
whether those properties or encoding schemes are defined and managed by DCMI
or by some agency: the key requirement is that the properties referred to in a
DCAP are compatible with the RDF notion of property.

4

It is a condition of that abstract model that all references to terms in a DC
metadata description are made in the form of URIs. Terms can thus be drawn from
any source, and references to those terms can be made without ambiguity. This set
of terms can be regarded as the � vocabulary� of the application or community that
the application profile is designed to support. The terms within that vocabulary
may also be deployed within the vocabularies of many other DCAPs.

It is important to realize that the semantics of those terms is carried by their
definition, independent of any application profile. Thus, semantic interoperability
is addressed outside of the realm of application profiles, and therefore works
between application profiles. Instead, application profiles focus on the set of
metadata records that follow the same guidelines. Therefore, application profiles
are more about high-level syntactic or structural interoperability than about se-
mantics.

The Design of Description Set Profiles

The Dublin Core Description Set Profile model is designed to offer a simple
constraint language for Dublin Core metadata, based on the DCMI Abstract Mod-
el and in line with the requirements for Dublin Core Application Profiles as set
forth by the Singapore Framework. It constrains the resources that may be de-
scribed by descriptions in the description set, the properties that may be used, and
the ways a value may be referenced.

A DSP does, however, not address the following:

● Human-readable documentation.

● Definition of vocabularies.

● Version control.

A DSP contains the formal syntactic constraints only, and will need to be com-
bined with human-readable information, usage guidelines, version management,
etc. in order to be used as an application profile. However, the design of the DSP
information model is intended to facilitate the merging of DSP information and
external information of the above kinds, for example by tools generating human-
readable documentation for a DCAP.

A DSP describes the structure of a Description Set by using the notions of
"templates" and "constraints".

A template describes the possible metadata structures in a conforming record.
There are two levels of templates in a Description Set Profile:

5

● Description templates, that contains the statement templates that ap-
ply to a single kind of description as well as constraints on the described
resource.

● Statement templates, that contains all the constraints on the property,
value strings, vocabulary encoding schemes, etc. that apply to a single
kind of statement.

While templates are used to express structures, constraints are used to limit
those structures. Figure 1 depicts the basic elements of the structure.

Thus, the DSP definition contains constructs for restricting

● what properties may be used in a statement and the multiplicity of
such statements

● what languages and syntax encoding schemes may be used for literals
and value strings, and if they may be used or not

● what vocabulary encoding schemes and value URIs that may be used,
and if they may be used or not.

The DSP specification also contains a pseudo-algorithm that defines the se-
mantics of the above constraints, i.e. how an application is supposed to process a
DSP. The algorithm takes as input a description set and a DSP, and gives the an-
swer � matching� or � non-matching� .

Figure 1: Templates and constraints in a DSP

6

The Book DSP example

To show some of the features of the DSP model, consider the example of an
application profile that wants to describe a book and its author. We would like to
describe the following:

● A book

○ The title (dcterms:title) of the book (a literal string with language
tag)

○ The creator (dcterms:creator) of the book, described separately

■ A single value string for the creator is allowed

■ No value URI for the creator is allowed

■ No vocabulary encoding scheme for the creator is allowed

● The Creator of the book

○ The name (foaf:name) of the creator (a literal string)

Using the XML serialization of a DSP, we would end up with the following
XML:

<DescriptionSetTemplate>

 <DescriptionTemplate maxOccur="1" minOccur="1">

 <StatementTemplate maxOccur="1" type="literal">

 <Property>http://purl.org/dc/terms/title</Property>

 <LiteralConstraint>

 <SyntaxEncodingSchemeOccurrence>disallowed</SyntaxEncodingSchemeOccurrence>

 <LanguageOccurrence>optional</LanguageOccurrence>

 </LiteralConstraint>

 </StatementTemplate>

 <StatementTemplate maxOccur="1" type="nonliteral">

 <Property>http://purl.org/dc/terms/creator</Property>

 <NonliteralConstraint descriptionTemplateID="creator">

 <ValueURIOccurrence>disallowed</ValueURIOccurrence>

 <VocabularyEncodingSchemeOccurrence>disallowed</VocabularyEncodingSchemeOccur-

rence>

 <ValueStringConstraint maxOccur="1">

 <SyntaxEncodingSchemeOccurrence>disallowed</SyntaxEncodingSchemeOccurrence>

 <LanguageOccurrence>disallowed</LanguageOccurrence>

 </ValueStringConstraint>

7

 </NonliteralConstraint>

 </StatementTemplate>

 </DescriptionTemplate>

 <DescriptionTemplate maxOccur="1" minOccur="1">

 <StatementTemplate maxOccur="1" type="literal">

 <Property>http://xmlns.com/foaf/0.1/name</Property>

 <LiteralConstraint>

 <SyntaxEncodingSchemeOccurrence>disallowed</SyntaxEncodingSchemeOccurrence>

 <LanguageOccurrence>disallowed</LanguageOccurrence>

 </LiteralConstraint>

 </StatementTemplate>

 </DescriptionTemplate>

</DescriptionSetTemplate>

The above XML documents the Book DSP in a machine-processable way. The
DSP describes a class of description sets matching the given constraints on the
book and creator descriptions.

We will now see how such a format can be used.

Using DSPs

A Description Set Profile can be used for many different purposes, such as:

● as a formal representation of the constraints of a Dublin Core Applica-
tion Profile

● as a syntax validation tool

● as configuration for databases

● as configuration for metadata editing tools

The DSP specification tries to be abstract enough to support such diverse re-
quirements.

8

Formal documentation: The Wiki DSP generator

An example of where DSPs fills the purpose of formal documentation is the Wiki
DSP generator used by the Dublin Core project and developed by one of the au-
thors, Fredrik Enoksson. The software adds markup definitions to a wiki system
(currently a MoinMoin installation) that generates a HTML-formatted display of
the DSP, intermingled with human-readable text. Upon request, the software can
generate an XML file.

The Wiki can then be used to host both the human-readable application profile

guidelines and the XML version, maintained in a single place. See Figure 2 for the
HTML output for the Book DSP example.

The wiki syntax is defined in Enoksson (2007).

Syntax validation

Validating metadata using a DSP can be done directly by an implementation of
the DSP model in a custom validation tool. A more promising approach, however,
is to leverage the widespread tool support for validating existing concrete syntaxes
and, in particular, for XML validation.

Given a concrete XML syntax for DCAM-based metadata, such as DC-XML
(currently being defined by the DCMI), a DSP can be converted to a syntax-spe-
cific validating schema. In the XML case, there are multiple options, such as XML
Schema, RelaxNG and SchemaTron, each supporting different complexity in con-
straints. The authors are currently experimenting with translations from a DSP to
these schema languages.

Figure 2: An HTML rendering of the DSP Wiki
syntax

9

Interesting to note is that the complexity of such a translation is dependent on
multiple factors:

● The flexibility of the schema language. XML Schema has well-docu-
mented difficulties in expressing certain forms of constraints, that are
simple to express in RelaxNG, etc.

● The options available in a DSP. If the model allows for too complex
constraints, translating them into a schema language will prove difficult.

● The design of the XML serialization of DCAM metadata. A more reg-
ular and straightforward syntax is more easily constrained.

The above considerations affects the design of the DSP specification � it is de-
sirable that it be straightforward to implement. It also affects the design of Dublin
Core syntaxes, especially DC-XML, which is currently under revision � it is desir-
able that the syntax is straightforward to validate using DSPs.

Metadata editors

DSPs have successfully been used to configure metadata editors. The SHAME
metadata editing framework (Palmér et al 2007) is a RDF-based solution for gen-
erating form-based RDF metadata editors. The DSP XML format is translated to
the form specification format of SHAME, and then used to create an editor. See
Figure 3 for an example editor generated from a definition of a � Simple Dublin
Core Application Profile� .

Figure 3: The SHAME editor con-
figured by a DSP

10

Conclusions

The definition of a formal model for Description Set Profiles marks an import-
ant milestone in the evolution of the Dublin Core Metadata Initiative, and is a val-
idation of the DCMI Abstract Model as a foundation for defining application pro-
files. Still, the model has yet to be validated by wide deployment and implementa-
tion, and many important issues remain to be studied. A few initial proofs of the
concepts have been realized � using DSP for formal documentation, using DSPs to
configure metadata editors, and using DSPs to generate XML Schemas for valida-
tion.

We expect that the next few years will show if DSPs solved the perceived prob-
lem or not. As part of the DC Singapore Framework for applications profiles, we
hope that DSPs will serve the community's need for application profile definitions
in support of quality control.

References

Allinson, J., Johnston, P., Powell, A. (2007), A Dublin Core Application Profile for Schol-
arly Works, Ariadne Issue 50, January 2007. Retrieved Sep 1, 2007, from
http://www.ariadne.ac.uk/issue50/allinson-et-al/

Baker, T. (2003), DCMI Usage Board Review of Application Profiles. Retrieved Sep 1,
2007, from http://dublincore.org/usage/documents/profiles/

Baker, T. (2005), Diverse Vocabularies in a Common Model: DCMI at ten years, Keynote
speech, DC-2005, Madrid, Spain. Retrieved Sep 1, 2007, from
http://dc2005.uc3m.es/program/presentations/2005-09-12.plenary.baker-keynote.ppt

Bearman, D., Miller, E., Rust, G., Trant, J. & Weibel, S. (1999), A Common Model to Sup-
port Interoperable Metadata, D-Lib Magazine, January 1999. Retrieved Sep 1, 2007,
from http://www.dlib.org/dlib/january99/bearman/01bearman.html

Brickley, D. & Guha, R. V. (2004), RDF Vocabulary Description Language 1.0: RDF
Schema, W3C Recommendation 10 February 2004. Retrieved Sep 1, 2007, from
http://www.w3.org/TR/rdf-schema/

Carroll, J.J., Stickler, P. (2004), TriX: RDF Triples in XML, Technical Report
HPL-2004-56, HP Labs. Retrieved Sep 1, 2007, from http://www.hpl.hp.com/te-
chreports/2004/HPL-2004-56.pdf

Dublin Core Application Profile Guidelines (2003), CEN Workshop Agreement CWA
14855. Retrieved Sep 1, 2007, from ftp://ftp.cenorm.be/PUBLIC/CWAs/e-
Europe/MMI-DC/cwa14855-00-2003-Nov.pdf

The Dublin Core Singapore Framework, DCMI. Retrieved Sep 1, 2007, from http://dublin-
core.org/architecturewiki/SingaporeFramework

Duval, E., Hodgins, W., Sutton, S. & Weibel, S. L. (2002), Metadata Principles and Practic-
alities, D-Lib Magazine, April 2002. Retrieved Sep 1, 2007, from
http://www.dlib.org/dlib/april02/weibel/04weibel.html

Enoksson, F., ed. (2007), Wiki format for Description Set Profiles. Retrieved Sep 1, 2007,
from http://dublincore.org/architecturewiki/DSPWikiSyntax

11

Friesen, N., Mason, J. & Ward, N. (2002), Building Educational Metadata Application Pro-
files, Dublin Core - 2002 Proceedings: Metadata for e-Communities: Supporting Di-
versity and Convergence. Retrieved Sep 1, 2007, from http://www.bncf.net/dc2002/pro-
gram/ft/paper7.pdf

Godby, C. J., Smith, D. & Childress, E. (2003), Two Paths to Interoperable Metadata, Pro-
ceedings of DC-2003: Supporting Communities of Discourse and Practice � Metadata
Research & Applications, Seattle, Washington (USA). Retrieved Sep 1, 2007, from
http://www.siderean.com/dc2003/103_paper-22.pdf

Guidelines for machine-processable representation of Dublin Core Application Profiles
(2005), CEN Workshop Agreement CWA 15248. Retrieved Sep 1, 2007, from ftp://ftp.-
cenorm.be/PUBLIC/CWAs/e-Europe/MMI-DC/cwa15248-00-2005-Apr.pdf

Heery, R. & Patel, M. (2000), Application Profiles: mixing and matching metadata schem-
as, Ariadne Issue 25, September 2000. Retrieved Sep 1, 2007, from
http://www.ariadne.ac.uk/issue25/app-profiles/

Heflin, J. (2004), OWL Web Ontology Language � Use Cases and Requirements, W3C Re-
commendation 10 February 2004. Retrieved Sep 1, 2007, from
http://www.w3.org/TR/webont-req/

Johnston, P., (2005a), XML, RDF, and DCAPs. Retrieved Sep 1, 2007, from
http://www.ukoln.ac.uk/metadata/dcmi/dc-elem-prop/

Johnston, P., (2005b), Element Refinement in Dublin Core Metadata. Retrieved Sep 1,
2007, from http://dublincore.org/documents/dc-elem-refine/

Klyne, G. & Carroll, J. J. (2004), Resource Description Framework (RDF): Concepts and
Abstract Syntax, W3C Recommendation 10 February 2004. Retrieved Sep 1, 2007, from
http://www.w3.org/TR/rdf-concepts/

Lagoze, C. (1996), The Warwick Framework � A Container Architecture for Diverse Sets
of Metadata, D-Lib Magazine, July/August 1996. Retrieved Sep 1, 2007, from
http://www.dlib.org/dlib/july96/lagoze/07lagoze.html

Lagoze, C., Sompel, H. Van de (2007), Compound Information Objects: The OAI-ORE
Perspective. Retrieved Sep 1, 2007, from
http://www.openarchives.org/ore/documents/CompoundObjects-200705.html

Manola, F. & Miller, E. (2004), RDF Primer, W3C Recommendation 10 February 2004.
Retrieved Sep 1, 2007, from http://www.w3.org/TR/rdf-primer/

Nilsson, M., ed. (2007), DCMI Description Set Profile Specification. Retrieved Sep 1,
2007, from http://dublincore.org/architecturewiki/DescriptionSetProfile

Nilsson, M., Johnston, P., Naeve, A., Powell, A. (2007), The Future of Learning Object
Metadata Interoperability, in Harman, K., Koohang A. (eds.) Learning Objects: Stand-
ards, Metadata, Repositories, and LCMS (pp 255-313), Informing Science press, ISBN
8392233751.

Palmér, M., Enoksson, F., Nilsson, M., Naeve, A. (2007), Annotation profiles: Configuring
forms to edit RDF. Proceedings of the international conference on Dublin Core and
metadata applications 2007: Application Profiles: Theory and Practice, Singapore, Aug
27 - 31 2007. Retrieved Sep 15, 2007, from
http://www.dcmipubs.org/ojs/index.php/pubs/article/viewFile/27/2

Powell, A., Nilsson, M., Naeve, A., Johnston, P. (2007), DCMI Abstract Model, DCMI Re-
commendation. Retrieved Sep 1, 2007, from http://dublincore.org/documents/abstract-
model/

Uschold, M. & Gruninger, M. (2002), Creating Semantically Integrated Communities on
the World Wide Web, Invited Talk, Semantic Web Workshop, Co-located with WWW
2002, Honolulu, HI, May 7 2002. Retrieved Sep 1, 2007, from
http://semanticweb2002.aifb.uni-karlsruhe.de/USCHOLD-Hawaii-InvitedTalk2002.pdf

