
Hannes Ebner

Collaborilla

An enhancement to the Conzilla concept
browser for enabling collaboration

July 21, 2006

M.Sc. Thesis at the Department of Computer and Systems Sciences
Corresponds to 20 weeks of full-time work

Royal Institute of Technology (KTH), Stockholm, Sweden

Contact information

Collaborilla Project

Internet: http://collaborilla.sourceforge.net

Author

Hannes Ebner
E-mail: hebner@kth.se

Supervisors

Matthias Palmér & Ambjörn Naeve
Knowledge Management Research Group
School of Computer Science and Communication
Royal Institute of Technology

Hercules Dalianis
Department of Computer and Systems Sciences
Stockholm University / Royal Institute of Technology

Department of Computer and Systems Sciences

Stockholm University /
Royal Institute of Technology
Forum 100
164 40 Kista
Sweden

Internet: http://www.dsv.su.se
Telephone: +46 8 16 20 00
Fax: +46 8 703 90 25

http://collaborilla.sourceforge.net
hebner@kth.se
http://www.dsv.su.se

Abstract

The research field Knowledge Management (KM) is about improving methods
to structure and filter information. A concept browser makes it possible to
navigate through complex information structures. Conzilla is such a concept
browser. It is designed to present knowledge, to set concepts into relations to
each other, and to make browsing through the resulting context-maps possible.
Conzilla allows information and content being tied to concepts and concept-
relations.

The collaboration facilities in Conzilla are limited. Basic elements such as
a lookup mechanism and lifecycle information for information structures are
missing. Before knowledge can be contributed, it is necessary to make sure
that dependencies are fulfilled and the history of an edited object is obtained.
This thesis is about providing these missing parts.

To be able to load a container, the information about the location of a
component has to be held by a central registry. To resolve eventually existing
dependencies, it is also necessary to register the components and its refer-
ences. This thesis provides a design which eliminates the existing restrictions.
The aim is to allow real collaboration through a remote services infrastruc-
ture, realized with Collaborilla. The theoretical background is discussed as
well as a practical solution, including a prototype of a remote collaboration
service.

Contents

1 Introduction . 1
1.1 Background . 1

1.1.1 Concept Browsing . 1
1.1.2 Terminology . 2

1.2 Problem definition . 2
1.2.1 Presentation of Information . 2
1.2.2 Technical Aspects . 3

1.3 Hypothesis . 3
1.4 Expected results . 4
1.5 Purpose . 4
1.6 Method . 5
1.7 How to read this document . 5

2 State of the Art . 6
2.1 Conzilla . 6

2.1.1 Identifying components . 6
2.1.2 Resolving . 6
2.1.3 Referring . 7
2.1.4 Collaboration . 7

2.2 Technologies . 8
2.2.1 Resolving and Referring . 8
2.2.2 Information Directory . 10
2.2.3 Data Storage . 11

3 Elements of Collaboration . 13
3.1 Collaborational Processes . 13

3.1.1 Containers in Pairs . 13
3.1.2 Loading context-maps . 13
3.1.3 Publishing context-maps . 14

3.2 Information to be Published . 14
3.2.1 Storage Independency . 14
3.2.2 Types of Information . 14
3.2.3 Identifiers . 14
3.2.4 Locations . 15
3.2.5 RDF-Information . 15

3.3 Versioning of Information . 16

Contents V

3.4 Publishing Data at Remote Locations . 16
3.5 Appropriate Technologies . 17

3.5.1 Information Directory . 17
3.5.2 Services . 18

4 Realization . 19
4.1 Technologies to be used . 19
4.2 Building an Information Directory . 19

4.2.1 Tree Structure . 19
4.2.2 Data Modeling . 20
4.2.3 Versioning . 22

4.3 Components of Collaborilla . 22
4.3.1 Overview . 22
4.3.2 Service . 23
4.3.3 Client Interface . 24
4.3.4 Protocol . 24
4.3.5 Distribution and Documentation . 25

4.4 Integration into Conzilla . 25
4.4.1 Interfaces . 25
4.4.2 Graphical User Interface . 26

5 Limitations and Potentials . 27
5.1 Limitations . 27

5.1.1 Integration into Conzilla . 27
5.1.2 Remote Files and Versioning . 27
5.1.3 Rights Management . 27

5.2 Server Protocol Enhancements . 28
5.2.1 Stateless Protocol . 28
5.2.2 Locking . 28
5.2.3 Transactions . 29
5.2.4 Implementation as Web Service . 29

6 Conclusions . 30
6.1 Overview . 30
6.2 What has been done? . 30
6.3 What remains to be done? . 31

References . 32

Abbreviations . 34

Information Directory . 36
A.1 OpenLDAP Software Suite . 36
A.2 Object Classes and Attributes . 36

Collaborilla . 39
B.1 Interface . 39
B.2 Protocol . 45

List of Figures

1.1 Editing a context-map in Conzilla . 2

2.1 Example resolver table . 7

4.1 Collaborilla generic tree structure . 20
4.2 Example URI mapped into an LDAP directory 21
4.3 Attributes of the custom object class . 21
4.4 Revisions of a Collaborilla entry . 22
4.5 Overview of the Collaborilla structure . 23
4.6 Components of a Collaborilla deployment . 24
4.7 Changes to the Conzilla class structure . 25

B.1 Status codes of the Collaborilla protocol . 47

1

Introduction

1.1 Background

1.1.1 Concept Browsing

The research field Knowledge Management (KM) is about improving meth-
ods to structure and filter information. A concept browser makes it possible
to navigate through such a complex information structure. See [18] for a sci-
entific paper describing how a concept browser is a new tool for improving
Knowledge Management.

Conzilla is such a concept browser. It is being developed at the Knowl-
edge Management Research (KMR) Group at the Royal Institute of Technology
(KTH). The application is Open Source, everybody can download1 and use it
for free. As a concept browser, Conzilla is designed to present knowledge,
to set concepts into a relation to each other and to make browsing through
the resulting context-maps possible. Conzilla allows information and content
being tied to specific concepts and concept-relations. The standard toolset
includes the Unified Modeling Language (UML) [5, 8] and supports the cre-
ation of class, activity, use-case, and process diagrams. See the screenshot in
figure 1.1 to get an idea of how information is presented by Conzilla.

The official website of Conzilla is an excellent resource to get more infor-
mation on how to create context-maps with Conzilla.

The result of a recent redesign was Conzilla in Version 2.0. A context-map
is not a single file anymore, it became an extendable entity. This allows the
authoring and lifecycle of a context-map to be a collaborative process. Fur-
thermore, to make collaboration useful it is important to know who modified
which information at which time etc. This information is called provenance
information. Today, elementary parts, such as lookup mechanisms and prove-
nance information are missing for efficient collaboration. This thesis is about
providing those missing parts.

1 URL: http://www.conzilla.org

http://www.conzilla.org

1.2 Problem definition 2

Fig. 1.1. Editing a context-map in Conzilla.

1.1.2 Terminology

According to [18, ch. 2], the following terms will be used in this thesis:

Concept Representation of some thing
Context Graph containing concepts and concept-relations
Context-map. Graphical representation of a context
Content. Information linked to a concept or a concept-relation
Component Concept, concept-relation, context, context-map, or content

In the following it is referred to resources whenever components or con-
tainers are discussed.

1.2 Problem definition

1.2.1 Presentation of Information

An issue to be solved is the presentation of collaborational information to the
user. It is complementary to the technical way of looking at a problem. Is has
to be discussed which parts of the decision-making require user-interaction.

The basic questions related to the presentation of information are:

• How is the provenance information of a component presented?

1.3 Hypothesis 3

• How should be dealt with conflicting information, for example different
titles for a concept?

• At which point of the collaboration processes should the user be presented
with information?

• Will the user be able to make a decision based upon the to be presented
information under all circumstances?

1.2.2 Technical Aspects

Contrary to loading a web page identified by a Uniform Resource Locator
(URL), the information that makes up a component is not contained in a
single file uniquely identified by a URL. The information that makes up the
component may be located in multiple containers2 around the internet and
new information may be expressed with time, independently of eventually
existing previous information. To avoid broken references to containers, the
identifiers of containers are not given as URLs directly. Instead, a lookup pro-
cedure is resolving identifiers into locations. Since the information of a single
component is allowed to be spread out, it is important to keep track of who
modified the information and when it was contributed.

The implementation of such collaboration capabilities raises several ques-
tions:

• How are components published?
• How is a specific component discovered?
• Which set of containers is relevant for a specific component?
• How is a container retrieved without breaking references?

1.3 Hypothesis

Prerequisites currently fulfilled by Conzilla:

• Components are identified via globally unique persistent identifiers.
• The information defining a component is held in one or several containers.

To be able to load a container, the information about its location has to
be held by a central entity, comparable to a card index. The client just knows
about the container’s identifier, the location of it can be requested from this
entity. I propose to introduce a remote resolving service and a client imple-
mentation in Conzilla to realize this approach.

In order to get the references right, it is necessary to register the compo-
nents and its dependencies at another entity. The dependencies are part of

2 Typically files

1.5 Purpose 4

the information about a component, so it makes sense to manage the prove-
nance information here as well. Provenance information has to contain the
“contribution role”, for example original author or contributor. It also has to
hold the date of contribution and information about who the contributor was.
Further information should be allowed but not forced. To present the prove-
nance information to the user, the Conzilla user interface has to be adapted
accordingly.

Comparable to a remote resolving service, a remote referring service should
be introduced. Perhaps it is possible to hold all information at the same place
and to bring both service together.

Hence, the containers needed for loading a component would be found
through a two step procedure:

• Identifiers of relevant containers are found through the remote referring
service, triggered by the identifier of the component.

• Containers’ identifiers are resolved into locations via the remote resolving
service.

1.4 Expected results

The expected outcome of this thesis is:

• A coherent design of how collaboration is done and perceived; a technical
description as well as how it is experienced from a user perspective.

• A practical solution to find relevant containers of a specific component,
including provenance information: a remote referring service.

• A practical solution find out where to a container is located, given its
identifier: a remote resolving service.

• Improved visibility of the collaborational aspect in Conzilla; the presenta-
tion of provenance information.

1.5 Purpose

The collaboration possibilities in Conzilla should allow:

• Referencing context-maps via hyperlinks.
• Reusing concepts and concept-relations others have created.
• Extending context-maps that others have created.
• Adding content to others concepts, concept-relations and context-maps.
• Adding comments and further information on others concepts, concept-

relations and context-maps.

1.7 How to read this document 5

For all these references, reuses, extensions, and additions it should be pos-
sible to find out who did them, what the purpose was, when the modification
was done etc. Hence, the collaboration possibilities have to be made available
in a way that preserves and allows inspection of provenance information.

1.6 Method

The research includes an analysis of the current abilities of Conzilla regarding
handling of Uniform Resource Identifiers (URIs) and a possible integration of a
remote referring and a remote resolving service to enable real collaboration.
Therefore is it necessary to analyze possible storage solutions like WebDAV,
see [9], or LDAP, which is specified in [26], with its free implementation
OpenLDAP3.

It is necessary to know about the data structure before thinking of stor-
ing the data somewhere. Which technology allows storage with minimal or
no modifications to the structure? It is also reasonable to take a look at es-
tablished resolving mechanisms such as DNS (see [15, 16]). Perhaps it is
possible to use similar methods or techniques for the referring and resolving
within Conzilla.

Research of the current state of the art within this area will be performed.
If techniques exist which are suitable for this problem, they will be applied
or adapted. Otherwise solutions will be developed. All implementations will
be done in the programming language Java using an Open Source License.
Any server solution will be deployed on Linux. An incremental development
process with early prototyping is required.

1.7 How to read this document

In the first chapter the background information is given to introduce the
reader into the topic and to create a picture on what this thesis is about.
The next chapter “State of the Art” discusses the current state of Conzilla.
Collaboration-related technologies are mentioned as well. In “Elements of
Collaboration” the necessities for collaboration are evaluated. The follow-
ing chapter “Realization” describes the actual implementation and realization
of the previously discussed elements. “Limitations and Potentials” gives an
overview of restrictions and possible enhancements, which leads into the last
chapter “Conclusions”, where the results of this thesis are being discussed.
The technical realization is described in more detail in the appendices.

3 URL: http://www.openldap.org

http://www.openldap.org

2

State of the Art

2.1 Conzilla

2.1.1 Identifying components

A component is either a concept, a concept-relation or a context-map.
Conzilla uses Uniform Resource Identifiers (URI) instead of Uniform Re-

source Locations (URL) for retrieving files. The idea behind is that it is ac-
ceptable to tell the user to choose a globally unique identifier, but it would
be inconvenient to decide about a permanent location of a file upon cre-
ation, which would also increase the probability of having broken links within
context-maps. The resulting approach of resolving a URI into a URL is more
complicated but allows a much more flexible handling of data. If a file is
moved, the references1 do not have to be updated. Instead, the entry in the
resolver is modified.

See [22, 21] and the Conzilla tutorial2 for more detailed information.

2.1.2 Resolving

It is possible to specify a URL for each URI, which is not very efficient. To
solve this issue, a local one-to-many resolver-table is used in addition. If the
URI cannot be resolved directly, the resolver tries to resolve the URI one level
above, see also the example in figure 2.1. This is performed until the URI can
be resolved. The URL is concatenated then with the significant part of the
to-be-resolved URI.

The only URI-scheme which is supported right now is URN:PATH3,
see [13] for details. To make the resolver-table work properly, all contain-
ers have to have a URN:PATH identifier.
1 Many and hard to find references make it hard to update this information
2 Linked on http://www.conzilla.org/doc/
3 Uniform Resource Name (URN)

http://www.conzilla.org/doc/

2.1 Conzilla 7

URI Location
/org/conzilla http://www.conzilla.org
/org/conzilla/local file:/home/he/.conzilla2/local
/org/conzilla/people http://people.conzilla.org

Fig. 2.1. An example of a resolver table.

The example in figure 2.1 holds several entries. If Conzilla tries to re-
solve the URI /org/conzilla/people/hannes/info.rdf, it looks for the best
correlation in the local resolver-table. In this case, this is /org/conzilla/

people. After combining the matched URI and the URL, the resulting URL is
http://people.conzilla.org/hannes/info.rdf. The example URI above
in URN:PATH notation would be urn:path:/org/conzilla/people/hannes/

info.rdf.

2.1.3 Referring

In Conzilla it is possible to navigate between context-maps in two ways: by
using contextual-neighborhoods and hyperlinks.

2.1.3.1 Contextual-neighborhoods

The contextual-neighborhood of a concept is the aggregation of all context-
maps which refer to this concept. It is implicitly created and cannot be mod-
ified directly, it is defined through the usage of concepts by different context-
maps. The list of context-maps in a contextual-neighborhood also depends on
the loaded data within Conzilla. If Conzilla did not load a context-map which
uses a specific concept, it will not show up in the contextual-neighborhood.

2.1.3.2 Hyperlinks

Hyperlinks can be created and modified by the user, they are under ex-
plicit control. Basically they work into the opposite direction of contextual-
neighborhoods. Hyperlinks are used by concepts to refer to context-maps,
whereas contextual-neighborhoods describe the usage of concepts within
context-maps.

2.1.4 Collaboration

2.1.4.1 Data storage

Conzilla stores the necessary information in RDF4 in two different containers:
the presentation container and the information container. The presentation
4 Resource Description Framework, see http://www.w3.org/RDF/

/org/conzilla
http://www.conzilla.org
/org/conzilla/local
file:/home/he/.conzilla2/local
/org/conzilla/people
http://people.conzilla.org
/org/conzilla/people/hannes/info.rdf
/org/conzilla/people
/org/conzilla/people
http://people.conzilla.org/hannes/info.rdf
urn:path:/org/conzilla/people/hannes/info.rdf
urn:path:/org/conzilla/people/hannes/info.rdf
http://www.w3.org/RDF/

2.2 Technologies 8

container keeps information about the graphical representation of concepts
and concept-relations. The descriptive information like author, title, descrip-
tion, etc is stored in the information container. The containers may be located
in the same file.

For the purpose of collaborating around context-maps it is important to be
able to split components and spread the parts into several files. This allows
for having a fine-grained control over context-maps. People can edit maps
without touching the original information, the risk of destroying someone
else’s information is minimized, and all contributors have full control over
the information they want to publish.

The separation into files for information and presentation, as well as a URI
for concepts and layouts accordingly makes it possible to use separate tools
for publishing information and presenting existing information.

2.1.4.2 Sessions

In Conzilla, context-maps are edited within sessions. Every session has its
own namespace, which is used to generate globally unique identifiers for the
components. Sessions are important for collaboration, as they guarantee a
unique URI for each created component, provided that the namespace is cho-
sen wisely. A session also holds information about which containers are used
for presentation and information.

2.2 Technologies

2.2.1 Resolving and Referring

2.2.1.1 Domain Name System

The DNS (defined in [16]) and its extending Resource Records5 offer a variety
of additional fields which allow more than a simple Hostname-to-IP transla-
tion.

The DNS RR for specifying the location of services (DNS SRV) was defined
in RFC 2782 [11]. The SRV RR allows the specification of servers depending
on the service and the domain. Several different servers can be used in the
service infrastructure of a single domain. The SRV-record works as a pointer
to those servers. For more information on this RR see the RFC.

The DNS-Based Service Discovery (DNS-SD) has been discussed in an
Internet-Draft, see [4]. DNS-SD offers (among other fields) a TXT record
which is destined for optional data, it could be used for the information we
need. A DNS message has a limited size of 512 bytes (defined in [16, section
5 DNS RR, see http://www.dns.net/dnsrd/rr.html

http://www.dns.net/dnsrd/rr.html

2.2 Technologies 9

2.3.4.]), which makes it too small for storing long paths or other information.
This size restriction applies to UDP6 connections only.

In Conzilla it is necessary to resolve a whole URI (described in sec-
tion 2.1.2) and not just a hostname, the DNS does not seem to be applicable
in general.

2.2.1.2 Persistant Identifiers

Persistant Identifiers (PI) are used to replace URLs and to create stable ref-
erences where needed. With PI the time and effort to maintain a directory
of links is reduced. It is commonly used for digital publications (e.g. in li-
brary databases), which get a worldwide unique identifier. Using PIs reliable
references to documents are possible.

A PI consists of hierarchical elements, like namespaces (Namespace ID,
NID) and subnamespaces (Subnamespace ID, SNID). Currently established PI
systems are the Handle system, the Digital Object Identifier (DOI), Persistant
URL (PURL), and Uniform Resource Names (URN).

Handle System

The Handle system7, specified in RFC 3650 [25], was developed to be able
to assign and manage PIs to digital resources on the Internet. The informa-
tion associated to a handle (including its location) can be modified without
changing the handle itself. The administration is decentralized, each handle
may be administered by a different authority.
The structure of a handle is simple:

<Handle Naming Authority> "/" <Handle Local Name>

Each handle consists of a prefix (Handle Naming Authority) and a suffix
(Handle Local Name). The prefix is a numerical code, referring to the institu-
tion. The suffix may be any string value.

Digital Object Identifier

The DOI system8 is based on identifying and exchanging resources of intellec-
tual property. At the same time DOI provides a technical and organizational
framework, which allows the administration of resources and the linkage of
authors and service providers.

6 UDP is the standard protocol for DNS queries; the possibility to fall back on TCP
may exist

7 URL: http://www.handle.net
8 URL: http://www.doi.org

http://www.handle.net
http://www.doi.org

2.2 Technologies 10

The DOI system consists of 3 components: metadata, a DOI as persistant
identifier, and the technical implementation of the Handle system. The struc-
ture of a DOI has been standardized (ANSI/NISO Standard Z39.84), see also
the Handle system.

PURL

PURLs9 are not persistant identifiers, but they can be transfered into exist-
ing standards like URN. From a technical point of view, PURL uses a redirect
command of HTTP to resolve a PURL into a URL.

Well-known examples are Internet services like tinyURL10, which are pri-
marily designed to make a long URL short.

Uniform Resource Name

The URN system is designed to keep the complexity of the deployment as low
as possible. Therefore the URN standard [24, 14] specifies how already ex-
isting namespaces (like URLs), numbering schemata or protocols (like HTTP)
can be easily transfered or integrated into the URN schema.

A URN is composed of hierarchical elements, such as a NID, a SNID, and
a Namespace Identifier Specific String (NISS). The following example shows
a generic URN:

<URN>:<NID>:<SNID>-<NISS>

Examples in the wild are URN:NBN (National Bibliography Number)
[12], an internationally administered namespace for national libraries, or
URN:PATH [13], which is also used by Conzilla.

2.2.2 Information Directory

2.2.2.1 Requirements

To store the necessary information for the referring and resolving services a
database backend is needed. Data can be stored using any available technolo-
gies, the question is which method offers the greatest efficiency and flexibil-
ity. An optimal solution would be to store information without bigger mod-
ifications, the transformation of available information to stored information
should be as straight-forward as possible.

To get a picture of which technologies we can fall back on, the basic prin-
ciples of common database systems have to be discussed. It would be also

9 URL: http://purl.oclc.org
10 URL: http://www.tinyurl.com

http://purl.oclc.org
http://www.tinyurl.com

2.2 Technologies 11

possible to store data in a plain filesystem, but this would ignore the avail-
ability of specialized systems (which provide greater flexibility) within this
area.

Which storage technology is to be used will be discussed in the next chap-
ter.

2.2.2.2 Database Management Systems

A (Relational) Database Management System (DBMS or RDBMS) is a com-
monly used technology to hold a large amount of data. A single database
usually consists of several tables, which are associated to each other using
key fields. This approach avoids having redundant information in the system,
if the basic principles of database normalization are followed11.

Depending on the structure of the database and its data, queries can be
complex and thus make the design of the solution complicated. Versioning of
data is not natively supported.

2.2.2.3 Lightweight Directory Access Protocol

Lightweight Directory Access Protocol (LDAP) is another widely deployed
database technology. LDAP is an information directory, the tree is built out
of the directory entries. Each entry consists of one or more attributes which
hold the information. Each entry can be access through a unique identifier,
the Distinguished Name (DN). The DN describes the exact position within the
directory. [10] LDAP is optimized for read-access, which makes it a good so-
lution for information directories with predominant read operations.

The design of LDAP allows the creation of entries as children of tree-nodes
(resulting in subtrees), making it possible to use a previously created direc-
tory structure. Custom data types can be created if the native schemata of
the LDAP distribution are not sufficient. Versioning of entries is not natively
supported.

2.2.3 Data Storage

2.2.3.1 FTP

In addition to storing in a local filesystem, Conzilla also supports remote stor-
age through FTP. This makes it possible to “collaborate” to a certain degree, it
allows other contributors to open a file and make changes. Since it cannot be
guaranteed that the file is opened by one contributor exclusively, information
may get lost if changes are overridden by accident. Apart from that it is not

11 See also “Codd’s rules”, http://en.wikipedia.org/wiki/Codd%27s 12 rules

http://en.wikipedia.org/wiki/Codd%27s_12_rules

2.2 Technologies 12

possible to do a rollback to an earlier version if it turns out that the changes
were not desired. This is problematic in a multi-user environment.

A benefit of FTP is that it is a common situation to have an FTP service
running in parallel to an HTTP service. The usage of this protocol is straight-
forward, it is well supported by client libraries. The resolver-table in Conzilla
can hold FTP or HTTP locations, allowing read-only access by using HTTP.
However, due to lack of native versioning of files, FTP is of limited use in
collaborative environments and limits the possibilities for designing collabo-
rative software.

RFC 959 [23] is a good resource for more information on FTP.

2.2.3.2 WebDAV

An alternative to FTP is WebDAV, an extension to HTTP. It extends the read-
only protocol with read-write capabilities. As the name of this standard12 [9]
says, WebDAV was designed to support authors and contributors in their col-
laborative work.

To avoid concurrent modifications, the protocol supports the locking of
resources. This is one of the basic requirements for making distributed au-
thoring possible. In order to access an earlier revision of a resource, WebDAV
can be setup on top of a Subversion13 (SVN) repository. When one or more
files are stored at a WebDAV location, a new revision is created in the SVN
repository, making older revision still available. The contributors know what
has been changed by making use of commit messages14.

WebDAV support can be enabled directly in a webserver15, so there is no
need to activate an additional service. The integration into the webserver
reduces deployment and firewall issues, and has the advantage of being able
to use its authentication and rights management (which is probably more
mature than an own implementation from scratch).

12 “Web-based Distributed Authoring and Versioning”, specified in RFC 2518
13 Open Source version control system, often described as the successor to CVS
14 A message which is given at the time a resource is modified in a repository
15 E.g. by using mod dav in Apache

3

Elements of Collaboration

3.1 Collaborational Processes

3.1.1 Containers in Pairs

Conzilla and Collaborilla know about two different kinds of references: origi-
nal and relevant containers. If a container is referred to as original, a depend-
ing resource cannot be loaded without it, since it contains essential informa-
tion. A relevant container is not really a dependency, it is more an optional
extension to a resource, it may be loaded or not. The user should have the
possibility to decide about the usage of relevant containers.

Before a container can be fully loaded, its dependencies have to be taken
into consideration. A presentation container is always dependent on an infor-
mation container, but an information container can be loaded without loading
the presentation container as well. To handle this problem and avoid loosing
information in the information directory, a presentation container always has
to refer to an information container as an original container. This way con-
tainers are always published in pairs.

3.1.2 Loading context-maps

Loading a context-map requires several steps and requests from the Collabo-
rilla service:

1. A context-map is to be loaded.
2. Original and relevant URIs for the context-map are requested. These are

the direct dependencies of the context-map.
3. The original URIs of the context-map’s dependencies are requested. This

enables the pairing of containers as described before.
4. The URIs are resolved into locations.
5. Conzilla is now able to load all containers and to show the context-map.

3.2 Information to be Published 14

3.1.3 Publishing context-maps

Context-maps are published by pushing required information into the infor-
mation directory using the Collaborilla service. The following elements have
to be published:

1. Containers are uploaded to public storage space, e.g. FTP, WebDAV, etc.
2. Locations of the containers.
3. Dependencies of the context-map and the containers.
4. Provenance information (RDF-data) of the resources. (At the beginning of

the publishing process the contributor is presented with an input dialog
to provide such information.)

3.2 Information to be Published

3.2.1 Storage Independency

The information which is discussed in this chapter should be seen as indepen-
dent from the storage technology. It should be possible to replace the storage
backend at a later stage without having to change the design of the system
too much.

3.2.2 Types of Information

Two different kinds of data are to be published: formal data and informal
data.

Formal data will contain URI to URI and URI to URL mappings, and it will
be used for the resolving of persistant identifiers into real locations. Another
part of the the formal data will be relations between resources. A component
can only be loaded if the containers in which it is included are loaded as well.

The informal data will consist of more complex information. We need
information about the document itself, authors, contributors, a history of
changes. Since Conzilla is based on RDF, why not use it also for this type
of information? RDF can be stored in a database as well as in a flat-file, so
the decision about the storage backend can be taken at a later point.

3.2.3 Identifiers

Conzilla uses globally unique identifiers, so it makes sense to use the same
identifiers within Collaborilla to make information about a component avail-
able. The URIs in Conzilla can be specified in different notations. The URI is

3.2 Information to be Published 15

written either like a URL 1 or in URN:PATH [13] notation. Since a URI can be
given in arbitrary notation, it is necessary to keep the design of Collaborilla
independent from it. This issue will be discussed in section 4.2.1.

As mentioned above, for the Referring Service it is important to store the
dependencies of a component. For example, if URI1 depends on2 URI2 and
URI3, it is necessary to store this piece of information somehow. With such
information available, Conzilla is able to request information about the com-
ponent identified by URI1.

3.2.4 Locations

Resolving a URI into a URL (which is part of the Resolving Service) requires for-
mal information about the location of the requested component to be stored.
If such information is not available, it is perhaps possible to construct it indi-
rectly using a parent identifier as described in section 2.1.2. One data-field
per entry is enough to hold the location information.

The difference with respect to the current situation will be that Conzilla
does not have to rely on a local resolver-table anymore. The remote resolver-
table will be built out of published files and their locations, which will be made
publicly available. The local resolver table can be kept anyway, it does not
become unnecessary because of this. It can be used in “offline” mode, when
there is no network connection or if public locations should be overruled.

3.2.5 RDF-Information

The RDF-information of a component represents the informal data. It holds
information such as author, contributor, comments, etc.; enough information
to follow a components history. Localization is supported, the information
can be given in several languages. The included information depends on the
implementation in Conzilla respectively the SHAME-library 3, which is used
by Conzilla.

The storage of the RDF-data could happen in 2 ways. Either by not touch-
ing it and storing it as a whole (more thoughts on this in section 3.3), or by
splitting it into its elements and storing it natively. This depends very much
on the storage backend. For LDAP it is possible to follow the approach of
generating RDF-models out of an LDAP directory [6] using OWL4 (see [1] for
the reference) ontologies.

1 See [3] for the specification; the definition of the generic syntax of a URI [2] is
interesting as well as it updates the definition of a URL

2 This stands for: it cannot be loaded without those components being loaded as well
3 URL: http://kmr.nada.kth.se/shame/
4 A Web Ontology Language

http://kmr.nada.kth.se/shame/

3.4 Publishing Data at Remote Locations 16

To keep a high level of abstraction (see 3.2.1 why this is desirable), the
handling of RDF-models should not be too specialized for a certain storage
backend.

3.3 Versioning of Information

To be able to follow the history of a component, it is necessary to have depre-
cated information available. It should be easy to look at or revert to an earlier
version of a specific resource. The reasons for reverting may be different, it
could be unintentional mistakes as well as malicious manipulations. With a
proper versioning it is also possible to follow for example the contributors and
their changes on a timeline. The question “Who modified which part, for which
reason, and when?” can be answered with the help of such a component-
history. Read-only access to this history is desirable, as an accurate status of
the deprecated information cannot be guaranteed otherwise.

To avoid unexpected side-effects, the history should contain full snapshots
instead of differentials between two consecutive revisions. This makes it also
possible to change the structure of the stored information without having to
break backwards compatibility at a later point of development. Apart from
this, saving differentials would not work with RDF-information as it would be
necessary to decode this information instead of saving it as a “blob”5. Build-
ing a revision out of a congregation of differentials would impact the server
performance badly (the more revisions the worse).

3.4 Publishing Data at Remote Locations

It does not make sense to publish the location of a file (see section 3.2.4) if the
file itself cannot be accessed publicly. This would be the case if the file is kept
at the author’s computer only. So before the location of a file is published, the
file has to be uploaded to a common storage (which can be accessed by the
target group without problems) as well.

Conzilla already supports storing of files at remote locations. Right now
this is restricted to the FTP [23], which does not allow versioning at all. Ver-
sioning is important, as discussed in section 3.3. It seems to make sense to
enhance Conzilla with a protocol which natively allows the integration of a
version control system. Right now this can be realized with WebDAV [9], see
section 2.2.3.2.
5 The RDF-information is not parsed and saved as it is

3.5 Appropriate Technologies 17

3.5 Appropriate Technologies

3.5.1 Information Directory

In section 2.2.2 possible backends for the information directory are discussed.
Before a decision can be made, it is necessary to know about the most impor-
tant criteria which are being discussed in this section.

How is the information identified?

As mentioned in section 2.1.1, Conzilla makes use of unique URIs to identify
containers and components. It makes sense to use the same values as sort of
“primary keys” to store and retrieve information. A different approach would
require an additional layer, to translate between the URIs of Conzilla and an
eventually introduced new naming schema.

Which type of data is to be stored?

It is necessary to take care of formal and informal data, see 3.2 at the begin-
ning of this chapter. There is no binary data; the RDF-data is natively pro-
cessed in the Extensible Markup Language (XML), so this and other required
fields (e.g. URLs) can be stored as String values.

How important is the data structure?

The structure of the information is flat and non-hierarchical. The information
for a container or a component is defined on a per-object basis, so it is just
relevant for the object itself. The only connection between several entries is
eventually existing dependencies as mentioned in section 3.2.3. The struc-
ture of the information is independent from the storage structure, which is
discussed later.

Is versioning problematic?

According to section 3.3 versioning of information is necessary. However, it
is not supported by the described database systems; a custom solution has to
be developed for our system, which increases complexity but does not seem
to be a problem.

Conclusion

Using URIs to identify entries is possible using a relational database as well
as with an LDAP directory. The same applies to the data types and to the
versioning, for these items the backend does not matter.

The data structure makes the difference. URIs as identifiers allow us to
build a tree, similar to directories in a filesystem. LDAP (see section 2.2.2.3)

3.5 Appropriate Technologies 18

supports the creation of such a tree. What it looks like is described in the
next chapter. In addition to this, the optimization of LDAP for read operations
makes it a good choice for the backend of the information directory. There
will be write operations as well (for example when information is published),
but the use case of fetching information will occur much more often6.

3.5.2 Services

3.5.2.1 Resolving and Referring

How are the remote resolving and referring services made available? Is it
convenient to have two (independent) services or does it make sense to pro-
vide one service which covers both functionalities? Are the services different
enough, e.g. is it possible to use them separately?

Both services are based on the same information directory, as well as the
implementation of the custom versioning. It is possible to use them separately,
but in practice the resolving service will always be utilized in connection with
the referring service, this is part of the publishing process. Two services would
also mean: two running service applications, two implemented protocols to
communicate with the services, and two implementations in the client appli-
cations. Too much overhead for services for which the functionality is not
separated enough.

The logical consequence is to implement resolving and referring in the
same service, the convergence is sufficient.

3.5.2.2 Access

A protocol for communication between the client and the service has to be
defined, the next chapter contains details on this. Conzilla will access the ser-
vice through a generic interface, so the underlying technology7 can be easily
exchanged.

6 Comparable to web pages: published once, read many times
7 Conventional Client/Server communication, Service-Oriented Architecture (SOA),

etc.

4

Realization

4.1 Technologies to be used

As a result of the discussion in the previous chapter the technologies for the
implementation have been chosen.

The used programming language is Java. This choice makes the integra-
tion into Conzilla easier and is independent of the system architecture. The
storage solution for the information directory is OpenLDAP, an Open Source
LDAP implementation. It has also been decided to define a common protocol
for both the referring and the resolving services.

4.2 Building an Information Directory

4.2.1 Tree Structure

LDAP provides various object classes for creating entries, with MUST and MAY
attributes. MUST attributes have to exist upon creation of an entry, whereas
MAY attributes contain optional information and may be omitted. [10]

To build an LDAP tree structure which reflects the identifiers, it is neces-
sary to tokenize the URIs used within Conzilla. Every single component of the
URI has a corresponding entry. A URI-component can be a protocol, a part
of a domain (top level and subdomains), a part of a path or an opaque string
(e.g. filename). It is not possible to build a tree without splitting the URI, the
result would be a flat structure.

Collaborilla uses the object class Organizational Unit (OU) to build the
tree. The only required attribute is ou, whose value is set to the name of
the URI-component. To store the meta-information (see 3.2.2 for the types of
information), Collaborilla uses its own custom object class, which is described
in the following section. In Figure 4.1 a generic illustration of the information
directory is shown.

4.2 Building an Information Directory 20

LDAP Directory

dc := collaborilla-root

ou := urn:path

...

... ou := http

ou := domain-component

...

... ou := path-component

... ...

ou := opaque-string

... cn := collaborilla-data

cn := revision cn := revision ...

...

...

ou := any-protocol

...

dc ... Directory Component
ou ... Organizational Unit

cn ... Common Name

Fig. 4.1. The Collaborilla generic tree structure.

Example

Given the URI http://kmr.nada.kth.se/people/hannes, the corresponding
LDAP distinguished name (DN) is ou=hannes,ou=people,ou=kmr,ou=nada,
ou=kth,ou=se,ou=http. There is also a directory component (DC) in the DN;
it is omitted here because it depends on the configuration of the LDAP server
installation. The domain- and path-components are not restricted to one en-
try. The tree-path to an entry has as much nodes as a URI has components.

The Collaborilla data is stored in a “meta-data only” node, the DN for
this example is cn=collaborilla-data,ou=hannes,ou=people,ou=kmr,ou=
nada,ou=kth,ou=se,ou=http. See figure 4.2 for a graphical representation
of this example.

How versioning works is discussed in section 4.2.3.

4.2.2 Data Modeling

It is possible to store all required values with attributes of standard object
classes. This brings several difficulties, as there are: not all suitable attributes

http://kmr.nada.kth.se/people/hannes
ou=hannes,ou=people,ou=kmr,ou=nada,ou=kth,ou=se,ou=http
ou=hannes,ou=people,ou=kmr,ou=nada,ou=kth,ou=se,ou=http
cn=collaborilla-data,ou=hannes,ou=people,ou=kmr,ou=nada,ou=kth,ou=se,ou=http
cn=collaborilla-data,ou=hannes,ou=people,ou=kmr,ou=nada,ou=kth,ou=se,ou=http

4.2 Building an Information Directory 21

LDAP Directory

dc := collaborilla-root

ou := http

... ou := se

ou := kth

... ou := nada

ou := kmr

... ou := people

ou := hannes

cn := collaborilla-data

cn := revision1 cn := revision2 ...

...

...

...

...

Fig. 4.2. An example URI mapped into an LDAP directory (resulting in a branch) with
Collaborilla information nodes (gray).

are contained in one single object class. It is necessary to create an entry based
on several object classes, just a few attributes of those classes would be used.
This is not always possible as some object classes require attributes, which
will not be used at all by Collaborilla. Dummy values would be required. To
avoid this and to be able to use custom sizes for attribute (e.g. long String
values for the RDF-data) the best and most elegant solution is to introduce a
new object class with customized attributes.

Attribute Description
cn Identifier, number of revision)
collabLocation URL, used for resolving
collabUriOriginal URI, refers to original containers
collabUriOther URI, refers to relevant containers
collabContextRdfInfo RDF-data for a context
collabContainerRdfInfo RDF-data for a container

Fig. 4.3. The attributes of the custom object class of Collaborilla.

The attributes of the Collaborilla object class are shown in figure 4.3.
Some attributes (cn and description) are inherited from the standard object

4.3 Components of Collaborilla 22

class top. Explicit timestamp attributes are missing in the Collaborilla object
class. The timestamps with the date and time of creation and last modification
are internal LDAP attributes which are part of every entry.

All attributes except cn are optional. E.g. if a location is assigned to an
identifier, the collabLocation attribute is used, no other attribute is neces-
sary. All attributes for holding locations or identifiers are not restricted in
the amount of values. This allows keeping several alternative locations (per-
haps with different protocols) for one URI. Multiple values are also necessary
for the URI attributes, a component can have more than one dependency.

4.2.3 Versioning

The most recent information is held in a collaborilla-data node. If values are
modified, e.g. because of changed dependencies or a new location, the current
information is copied into a new child-node (named after the number of the
revision) and the parent node is modified with the new information. See
figure 4.4 for an example with several revisions. The collaborilla-data node is
a revision itself, but is not identified through a revision number.

...

... ou := model.rdf

cn := collaborilla-data
current information

cn := revision1
old information

cn := revision2
old information

...

Fig. 4.4. A Collaborilla entry with current and outdated information in several revi-
sions.

The structure (object class, attributes) of a revision is the same as a node
with current information. This makes it easy to access older versions of in-
formation; the data of old entries should not be modified in order to keep an
authentic history of an entry.

4.3 Components of Collaborilla

4.3.1 Overview

Collaborilla consists of two parts with different functionality: the client side
and the server side. All classes are implemented in Java, so it is possible to

4.3 Components of Collaborilla 23

integrate Collaborilla into Conzilla without writing a separate client imple-
mentation.

<<interface>>
CollaborillaAccessible

CollaborillaServiceClient

CollaborillaSimpleClient

CollaborillaObjectCollaborillaService

Fig. 4.5. An overview of the structure of Collaborilla.

In figure 4.5 the most significant parts of the architecture are shown, in-
cluding how they work together logically. The classes CollaborillaServiceClient
and CollaborillaSimpleClient are implementations of the interface Collaborilla-
Accessible. They will be used from within Conzilla. The class CollaborillaObject
is an abstraction of the LDAP for Java (JLDAP) library and contains the main
intelligence behind Collaborilla. It implements e.g. building of an information
tree and versioning.

The class CollaborillaService includes the implementation of the discussed
services and makes uses of the previously mentioned classes. Its main()

method starts a multi-threaded server and listens on a configurable TCP-port
for incoming connections.

4.3.2 Service

A Collaborilla installation requires a configured and running LDAP service1 to
which the service can connect to store information in.

The service listens on a configurable TCP port for connections. It is multi-
threaded and “speaks” a clear-text protocol, which is described in the sections
4.3.4 and B.2.
1 Even possible on the same server

4.3 Components of Collaborilla 24

CollaborillaService OpenLDAP server

Conzilla

<<interface>>
CollaborillaAccessible

Client side

Server side

Fig. 4.6. The components of a Collaborilla deployment.

4.3.3 Client Interface

The client classes implement an interface (see section B.1 for details), which
makes it possible to switch the client class in Conzilla without changes in the
source code. Right now two clients are implemented. The class Collaborilla-
ServiceClient connects to the Collaborilla service and is the client which is sup-
posed to be used in a productive environment. The second implementation
CollaborillaSimpleClient does not require an up and running Collaborilla ser-
vice as it connects directly to the LDAP directory. This simple implementation
is a proof of concept and not dedicated to a stable environment.

Error handling is done through an own exception class Collaborilla-
Exception, it includes (and wraps) also eventually occurring errors in the LDAP
directory.

4.3.4 Protocol

The protocol is held in clear-text, the service could also be accessed through
a common terminal client. The commands can be grouped in read-only, mod-
ifying and temporary modifying commands.

Read-only commands request already existing information, whereas mod-
ifying commands add, remove or change information. A temporary modifying
command is used to set the session between the client and the server into a
different context. An example is to set the number of the requested revision.
The retrieved information will be different afterwards.2

More details on the protocol can be found in the appendix, section B.2.

2 Although the same URI is being accessed and nothing changes in the directory itself

4.4 Integration into Conzilla 25

4.3.5 Distribution and Documentation

The Collaborilla project is available as a Sourceforge project3. The source
code including Ant4 build scripts can be checked out of a Subversion reposi-
tory. Collaborilla is distributed under the GNU General Public License Version
25 (GPL).

The source code is thoroughly documented, a documentation of all classes
and methods can be generated with Javadoc6.

4.4 Integration into Conzilla

4.4.1 Interfaces

Before Collaborilla can be integrated properly, changes to the Conzilla inter-
face structure have to be done. In order to connect to the Collaborilla service,
the client interface CollaborillaAccessible has to be integrated into Conzilla. In
figure 4.7 the class and interface structure with the most important compo-
nents is shown. The gray items have to be adapted or newly created.

TagManager

ContextManager

ContainerManager

ConzillaKit Conzilla

View ViewManager

MapController

MapManager

Edit

Browse

MapDisplayer

MapStore

ContextMap

Layouts

Concept

ResourceStore

ComponentManager

Cache

Non-GUI GUI

Fig. 4.7. Changes to the Conzilla class structure.

3 URL: http://collaborilla.sf.net
4 URL: http://ant.apache.org
5 URL: http://www.gnu.org/copyleft/gpl.html
6 URL: http://java.sun.com/j2se/javadoc/

http://collaborilla.sf.net
http://ant.apache.org
http://www.gnu.org/copyleft/gpl.html
http://java.sun.com/j2se/javadoc/

4.4 Integration into Conzilla 26

The functionality of the ContainerManager will be extended by a new in-
terface called RemoteContainerManager. It provides all necessary methods to
retrieve and publish public information. The ComponentManager will be ex-
tended by a RemoteComponentManager in the same way. In addition to meth-
ods for publishing and unpublishing, there will be methods to request the lo-
cations, associated container information (dependencies), RDF-information,
as well as the dates of creation and last modification.

The ContextManager and the EditMapManager have to be modified to
make use of the newly available functionality. It is also useful to implement
a caching mechanism to decrease the number of requests to the Collaborilla
service.

4.4.2 Graphical User Interface

To be able to maintain collaboration data the Graphical User Interface (GUI)
of Conzilla has to be adapted. Two different user interfaces are necessary:
one for manipulating the remote resolver table, and a second for providing
provenance information.

The already existing possibility of maintaining a local resolver table does
not have to be removed. It can be kept for using Conzilla in “offline mode”7

or to override the remote resolver table by having a higher priority for locally
specified locations.

Remote Resolver Table

The User Interface (UI) for editing the remote resolver table can be similar to
the already existing one, see 2.1.2. It should include the possibility to publish
locations to the server, as well as functionality to unpublish or modify already
published locations.

Provenance Information

When publishing e.g. a context-map, it is important to announce who the
author or contributor was, and to give some background information. The
SHAME library8 provides editors and query interfaces for RDF metadata and
is used by Conzilla. SHAME can be used to request the needed information
from the publisher, see also section 3.2.5.

7 There is no “offline mode” in the current version of Conzilla
8 Standardized Hyper Adaptable Metadata Editor, http://shame.sf.net

http://shame.sf.net

5

Limitations and Potentials

5.1 Limitations

5.1.1 Integration into Conzilla

The integration into Conzilla as it is discussed in section 4.4 has not been
carried out yet. One of the outcomes of this thesis is a prototype of the Colla-
borilla service.

5.1.2 Remote Files and Versioning

Conzilla’s only supported remote storage protocol is FTP, which does not sup-
port integration into a Revision Control System (RCS). In order to maintain the
history of a file, it is necessary to enhance Conzilla with the WebDAV protocol,
see also section 2.2.3.2. WebDAV supports integration with the modern RCS
Subversion.

5.1.3 Rights Management

Rights management has not been implemented, nor has it been discussed.
This would exceed the scope of this thesis. The current implementation of the
Collaborilla service allows anybody to change anything. The problem of ma-
licious manipulation of published information is existant, but the versioning
of data in the information directory lessens this design weakness.

Write-access to published files is more difficult as it requires authenticated
admission e.g. to the FTP service where the file has been published at. With
WebDAV it is possible to use the webserver’s authentication mechanisms as
well.

5.2 Server Protocol Enhancements 28

5.2 Server Protocol Enhancements

5.2.1 Stateless Protocol

The Collaborilla protocol is stateful. After submitting a URI all following com-
mands operate on the entry of the same URI until a new URI is sent to the
server. If data is requested for example with a GET command, the server ex-
pects a URI command to be sent before. This makes at least 2 commands
necessary for simple read operations, which can be avoided by using state-
less read-only commands. Similar to HTTP all necessary data can be sent in
a single command to the server. An approach like the Representational State
Transfer (ReST, see [7]) would be appropriate for doing this.

A generic description of single-command read operations:

<OPERATION> <URI> <REVISION>

To retrieve the locations for the URI http://conzilla.org/concepts from
revision 2 it is now necessary to send 3 commands:

URI http://conzilla.org/concepts

SET REVISION 2

GET URL

With a stateless protocol enhancement it is enough to send one single com-
mand:

GETURL http://conzilla.org/concepts 2

5.2.2 Locking

It can lead to inconsistent data in the directory if two or more clients access
the same entry with a modifying command at the same time. To avoid this, an
entry should be accessed in a mutual exclusive way, similar to synchronized
thread-programming. To achieve this a URI could be locked automatically
for the time it is accessed. Alternatively a locking command could be sent
by a client manually before a modification is done. This requires the client
to unlock an entry properly before closing the connection, which can lead to
problems if a connection is closed unexpectedly. Considering this, a server-
internal automatic locking mechanism might be better.

Locking can be realized in different ways: locking by setting an attribute
of the LDAP entry or by doing it inside the server without touching the LDAP
entry. If an attribute is set it has to be analyzed how locking impacts the server
performance under high load, as it requires a locking and an unlocking opera-
tion on the LDAP directory. If it is done within the server the performance will
not be affected noticeably. However, this can cause problems if the directory
is not just accessed by the server, but also by for example a Web Service.

http://conzilla.org/concepts

5.2 Server Protocol Enhancements 29

5.2.3 Transactions

If several modifying commands are sent to the server consecutively and an er-
ror occurs while executing one of them, the client application has to rollback
to an earlier revision manually. This produces overhead in the client applica-
tion and can be avoided by introducing transactional updating of data as we
know it from Relational Database Management Systems (RDMS). An imple-
mentation of the ACID1 model, as it is known from database theory, would be
reasonable.

Transactions also solve the problem with concurrent write operations, as
described in the section before. Before sending a batch of commands, a trans-
action is started automatically by the command to create a new revision. After
the commands are sent, the client completes the query by sending COMMIT
or ROLLBACK, depending on the intention. If all commands are successful,
the server returns an OK. If one or more commands fail, or the client discon-
nects without committing, the service performs an automatic rollback, with-
out making any client interaction necessary.

5.2.4 Implementation as Web Service

Instead of using our own protocol and the CollaborillaService we could imple-
ment a Web Service using the SOAP2, called CollaborillaWebService for exam-
ple. This would result in a stateless protocol similar to the approach described
in section 5.2.1, the difference is the technique for transmitting the data.

An advantage of Web Services in the context of reachability is the used
port number. It is possible to integrate it into an already existing HTTP-server,
so it can be accessed through the standard HTTP or HTTPS ports3. Lots of
firewalls are configured very restrictively, so it can happen that the access to
services which use non-standard ports (like CollaborillaService) are blocked.
CollaborillaService could also be configured to listen on port 80, but a cap-
tious packet-filter would detect that this is not HTTP and block it.

1 Atomicity, Consistency, Isolation, Durability
2 Simple Object Access Protocol, specifications at http://www.w3.org/TR/soap/
3 TCP port 80 respectively port 443

http://www.w3.org/TR/soap/

6

Conclusions

6.1 Overview

The purpose of this thesis was to extend Conzilla with collaboration facilities.
The task was to place the cornerstones for optimal collective performance as
it is required in modern working groups. This document provides solutions
for the questions which have been raised in the introductive chapter.

The main goal was to provide a coherent design of an infrastructure to
enable collaborative work, which lead to a prototype to show that a practical
solution can be based on that design. This prototype contains remote referring
and remote resolving functionalities, which have been implemented in the
Collaborilla service.

6.2 What has been done?

By using the Collaborilla service it is possible to find the relevant containers
of a specific Conzilla component to fulfill eventually existing dependencies.
The possibility to resolve an identifier into a real location makes it possible
to load containers no matter where they are stored. A central register like
the Collaborilla service helps to avoid redundant information and supports
efficient reuse of already existing components. The meta-data (provenance
information) is based on the contribution role.

The questions from the first chapter can be answered now:

• Information about the location of a component is held by the Collaborilla
service and can be requested by Conzilla, which just knows the compo-
nent’s identifier.

• Components and their dependencies are registered at the Collaborilla ser-
vice and make it possible to entirely load a context-map, including the
resources it is dependent on.

6.3 What remains to be done? 31

• The “contribution role” of an author is described by the provenance infor-
mation, which is held by the Collaborilla service. The provenance infor-
mation allows to find out who contributed which information, for which
purpose, as well as the time and date of the contribution.

6.3 What remains to be done?

The integration of Collaborilla into Conzilla requires changes to the Conzilla
class structure and has not been carried out during this thesis. To be specific,
the ability to publish and unpublish context-maps and their meta-data, as well
as the utilization of the remote resolver table is missing. Creation and modifi-
cation of provenance information and the remote resolver table is depending
on user interfaces which have to be created.

Semantic collaboration in the Human Semantic Web [19] requires strate-
gies to realize conceptual calibration as discussed in [17]. The evolution of
Conzilla and Collaborilla makes it necessary to think about supporting dis-
course management as well, as this is a cornerstone of serious collaboration
which should not be underrated.

With such objective targets, Collaborilla will contribute well to e-learning
platforms1 and give collaborative modeling a new perspective.

1 See [20] for a presentation of an infrastructure, an architecture, and adequate
frameworks and tools

References

1. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, and L. A. Stein. OWL Web Ontology Language. Recommendation,
World Wide Web Consortium (W3C), February 2004.
URL: http://www.w3.org/TR/owl-ref/.

2. T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI):
Generic Syntax. Request for Comments 3986, Internet Engineering Task Force,
January 2005.
URL: http://www.ietf.org/rfc/rfc3986.txt.

3. T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource Locators (URL).
Request for Comments 1738, Internet Engineering Task Force, December 1994.
URL: http://www.ietf.org/rfc/rfc1738.txt.

4. S. Cheshire and M. Krochmal. DNS-Based Service Discovery. Internet-Draft, Inter-
net Engineering Task Force, June 2005. draft-cheshire-dnsext-dns-sd-03.

txt.
5. Committee JTC 1/SC 7. Unified Modeling Language (UML) Version 1.4.2. Standard

ISO/IEC 19501:2005, International Organization for Standardization, April 2005.
6. S. Dietzold. Generating RDF Models from LDAP Directories. Crete, Greece, 2005.

Proceedings of the SFSW 05 Workshop on Scripting for the Semantic Web.
7. R. T. Fielding. Architectural styles and the design of network-based software

architectures. PhD thesis, University of California, Irvine, 2000.
URL: http://www.ics.uci.edu/∼fielding/.

8. M. Fowler. UML distilled: a brief guide to the standard object modeling language.
Addison-Wesley, 2004.

9. Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen. HTTP Extensions for
Distributed Authoring – WEBDAV. Request for Comments 2518, Internet Engineer-
ing Task Force, February 1999.
URL: http://www.ietf.org/rfc/rfc2518.txt.

10. B. Greenblatt. Internet Directories: How to build and manage applications for
LDAP, DNS, and other directories. Prentice Hall, 2001.

11. A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for specifying the location of
services (DNS SRV). Request for Comments 2782, Internet Engineering Task Force,
February 2000.
URL: http://www.ietf.org/rfc/rfc2782.txt.

12. J. Hakala. Using National Bibliography Numbers as Uniform Resource Names. Re-
quest for Comments 3188, Internet Engineering Task Force, October 2001.
URL: http://www.ietf.org/rfc/rfc3188.txt.

13. D. LaLiberte and M. Shapiro. The Path URN Specification. Internet-draft, Internet
Engineering Task Force, September 1995.
URL: http://www.hypernews.org/∼liberte/www/path.html.

http://www.w3.org/TR/owl-ref/
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc1738.txt
draft-cheshire-dnsext-dns-sd-03.txt
draft-cheshire-dnsext-dns-sd-03.txt
http://www.ics.uci.edu/~fielding/
http://www.ietf.org/rfc/rfc2518.txt
http://www.ietf.org/rfc/rfc2782.txt
http://www.ietf.org/rfc/rfc3188.txt
http://www.hypernews.org/~liberte/www/path.html

References 33

14. R. Moats. URN Syntax. Request for Comments 2141, Internet Engineering Task
Force, May 1997.
URL: http://www.ietf.org/rfc/rfc2141.txt.

15. P. Mockapetris. Domain Names - Concepts and Facilities. Request for Comments
1034, Internet Engineering Task Force, November 1987.
URL: http://www.ietf.org/rfc/rfc1034.txt.

16. P. Mockapetris. Domain Names - Implementation and Specification. Request for
Comments 1035, Internet Engineering Task Force, November 1987.
URL: http://www.ietf.org/rfc/rfc1035.txt.

17. A. Naeve. The Garden of Knowledge as a Knowledge Manifold - A Conceptual
Framework for Computer Supported Subjective Education. Technical report, De-
partment of Numerical Analysis and Computing Science, Royal Institute of Tech-
nology, Stockholm, 1997.
URL: http://kmr.nada.kth.se/papers/KnowledgeManifolds/cid 17.pdf.

18. A. Naeve. The Concept Browser - a new form of Knowledge Management Tool. Lund,
Sweden, October 2001. Proceedings of the 2nd European Web-based Learning
Environments Conference (WBLE 2001).

19. A. Naeve. The Human Semantic Web - Shifting from Knowledge Push to Knowledge
Pull. International Journal on Semantic Web & Information Systems, 1(3):1–30,
July-September 2005.
URL: http://kmr.nada.kth.se/papers/SemanticWeb/HSW.pdf.

20. A. Naeve, M. Nilsson, M. Palmér, and F. Paulsson. Contributions to a public e-
learning platform: infrastructure; architecture; frameworks; tools. International
Journal of Learning Technology, 1(3):352–381, 2005.
URL: http://kmr.nada.kth.se/papers/SemanticWeb/Contrib-to-PeLP.pdf.

21. M. Nilsson. The Conzilla Design - The Definitive Reference. Technical report, Depart-
ment of Numerical Analysis and Computing Science, Royal Institute of Technology,
Stockholm, 2000.
URL: http://conzilla.org/doc/conzilla-design/conzilla-design.html.

22. M. Nilsson and M. Palmér. Conzilla - Towards a concept browser. Master’s the-
sis, Department of Numerical Analysis and Computing Science, Royal Institute of
Technology, Stockholm, 1999.
URL: http://kmr.nada.kth.se/papers/ConceptualBrowsing/cid 53.pdf.

23. J. Postel and J. Reynolds. File Transfer Protocol (FTP). Request for Comments 959,
Internet Engineering Task Force, October 1985.
URL: http://www.ietf.org/rfc/rfc959.txt.

24. K. Sollins and L. Masinter. Functional Requirements for Uniform Resource Names.
Request for Comments 1737, Internet Engineering Task Force, December 1994.
URL: http://www.ietf.org/rfc/rfc1737.txt.

25. S. Sun, L. Lannom, and B. Boesch. Handle System Overview. Request for Comments
3650, Internet Engineering Task Force, November 2003.
URL: http://www.ietf.org/rfc/rfc3650.txt.

26. M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3). Re-
quest for Comments 2251, Internet Engineering Task Force, December 1997.
URL: http://www.ietf.org/rfc/rfc2251.txt.

http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://kmr.nada.kth.se/papers/KnowledgeManifolds/cid_17.pdf
http://kmr.nada.kth.se/papers/SemanticWeb/HSW.pdf
http://kmr.nada.kth.se/papers/SemanticWeb/Contrib-to-PeLP.pdf
http://conzilla.org/doc/conzilla-design/conzilla-design.html
http://kmr.nada.kth.se/papers/ConceptualBrowsing/cid_53.pdf
http://www.ietf.org/rfc/rfc959.txt
http://www.ietf.org/rfc/rfc1737.txt
http://www.ietf.org/rfc/rfc3650.txt
http://www.ietf.org/rfc/rfc2251.txt

Abbreviations

ACID Atomicity, Consistency, Isolation, Durability
CN Common Name
CVS Concurrent Versions System
DBMS Database Management System
DC Directory Component
DNS RR DNS Resource Records
DNS Domain Name System
DN Distinguished Name
DOI Digital Object Identifier
FTP File Transfer Protocol
GPL GNU General Public License
GUI Graphical User Interface
HTTPS Hypertext Transfer Protocol over Secure Socket Layer
HTTP Hypertext Transfer Protocol
ID Identifier
IETF Internet Engineering Task Force
JLDAP Java LDAP Class Libraries
KMR Knowledge Management Research Group
KTH Kungliga Tekniska Högskolan, english: Royal Institute

of Technology, Stockholm
LDAP Lightweight Directory Access Protocol
LDIF LDAP Data Interchange Format
NID Namespace ID
NISS Namespace Identifier Specific String
OID Object Identifier
OU Organizational Unit
OWL Web Ontology Language
PI Persistant Identifier
PURL Persistant URL
RCS Revision Control System
RDBMS Relational Database Management System
RDF Resource Description Framework
ReST Representational State Transfer
RFC Request for Comments
SHAME Standardized Hyper Adaptable Metadata Editor
SNID Subnamespace ID

ABBREVIATIONS 35

SOAP Simple Object Access Protocol
SOA Service-Oriented Architecture
SVN Subversion
TCP Transmission Control Protocol
UI User Interface
UML Unified Modeling Language
URI Uniform Resource Identifier
URL Uniform Resource Locator
URN Uniform Resource Name
W3C World Wide Web Consortium
WebDAV Web-based Distributed Authoring and Versioning
XML Extensible Markup Language

A

Information Directory

A.1 OpenLDAP Software Suite

Collaborilla uses the OpenLDAP1 software suite. OpenLDAP supports stan-
dard LDAP and includes the stand-alone LDAP daemon slapd, the stand-alone
LDAP update replication daemon slurpd and client libraries implementing the
LDAP protocol.

Collaborilla makes use of JLDAP, an associated OpenLDAP project which
provides LDAP access from within Java applications and was contributed by
Novell.

A.2 Object Classes and Attributes

Object Identifiers

In LDAP OIDs2 (Object Identifiers) are used to uniquely identify the compo-
nents of an LDAP directory, such as object classes, attributes, syntaxes, match-
ing rules, just to mention the most important ones.

The used space for the OIDs is temporary, experimental, OpenLDAP spe-
cific, and should not be propagated publicly.

objectIdentifier CollaborillaLDAPRoot 1.3.6.1.4.1.4203.666

objectIdentifier CollaborillaLDAPAttrType CollaborillaLDAPRoot:1

objectIdentifier CollaborillaLDAPObjClass CollaborillaLDAPRoot:3

Custom Attributes

If the object class makes use of attributes which are not included in the LDAP
server distribution, they have to be defined in the schema-file before the object
class is specified itself.

1 URL: http://www.openldap.org
2 See http://www.alvestrand.no/objectid/ for a public directory and more infor-

mation on OIDs

http://www.openldap.org
http://www.alvestrand.no/objectid/

A.2 Object Classes and Attributes 37

attributetype (CollaborillaLDAPAttrType:201

NAME ’collaborillaUriOriginal’

DESC ’’

EQUALITY caseIgnoreMatch

SUBSTR caseIgnoreSubstringsMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{4096}

)

attributetype (CollaborillaLDAPAttrType:202

NAME ’collaborillaUriOther’

DESC ’’

EQUALITY caseIgnoreMatch

SUBSTR caseIgnoreSubstringsMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{4096}

)

attributetype (CollaborillaLDAPAttrType:203

NAME ’collaborillaContextRdfInfo’

DESC ’’

EQUALITY caseIgnoreMatch

SUBSTR caseIgnoreSubstringsMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{65536}

SINGLE-VALUE

)

attributetype (CollaborillaLDAPAttrType:204

NAME ’collaborillaLocation’

DESC ’’

EQUALITY caseIgnoreMatch

SUBSTR caseIgnoreSubstringsMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{4096}

)

attributetype (CollaborillaLDAPAttrType:205

NAME ’collaborillaContainerRdfInfo’

DESC ’’

EQUALITY caseIgnoreMatch

SUBSTR caseIgnoreSubstringsMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{65536}

SINGLE-VALUE

)

attributetype (CollaborillaLDAPAttrType:206

NAME ’collaborillaObjectType’

DESC ’’

EQUALITY caseIgnoreMatch

SUBSTR caseIgnoreSubstringsMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{32}

SINGLE-VALUE

)

attributetype (CollaborillaLDAPAttrType:207

NAME ’collaborillaObjectDeleted’

DESC ’’

A.2 Object Classes and Attributes 38

EQUALITY booleanMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.7

SINGLE-VALUE

)

Custom Object Class

One MUST-field: cn (Common Name). It is used as a unique identifier to
differentiate between releases and holds the number of the release. The rest
of the fields is optional, as this information may be given or not.

objectClass (CollaborillaLDAPObjClass:200

NAME ’collaborillaObject’

DESC ’’

SUP top

STRUCTURAL

MUST (cn)

MAY (description $

collaborillaUriOriginal $

collaborillaUriOther $

collaborillaContextRdfInfo $

collaborillaLocation $

collaborillaContainerRdfInfo $

collaborillaObjectType $

collaborillaObjectDeleted)

)

B

Collaborilla

B.1 Interface

The interface CollaborillaAccessible provides the functionality to publish infor-
mation and to handle published information. The interface is listed below.

1 public interface CollaborillaAccessible

2 {

3 /**

4 * Connects to the service.

5 */

6 public abstract void connect()

7 throws CollaborillaException;

8

9 /**

10 * Disconnects from the service.

11 */

12 public abstract void disconnect()

13 throws CollaborillaException;

14

15 /**

16 * Checks whether the connection is up.

17 */

18 public abstract boolean isConnected();

19

20 /**

21 * Sets the URI of the LDAP entry and rebuilds the Base DN.

22 *

23 * @param uri URI

24 * @param create Tells the method to create the object of it does

25 * not exist yet

26 */

27 public abstract void setIdentifier(String uri, boolean create)

28 throws CollaborillaException;

29

30 /**

31 * Returns the number of the current revision.

32 *

33 * @return Current revision number. If we work with an up-to-date

34 * object (the latest revision) the returned value is 0.

B.1 Interface 40

35 */

36 public abstract int getRevisionNumber()

37 throws CollaborillaException;

38

39 /**

40 * Sets the number of the revision. After setting the revision

41 * the Base DN will be rebuilt and all operations will be performed

42 * at the revision with the number of the parameter.

43 *

44 * @param rev Revision number. Should be 0 to return to the most

45 * recent LDAP entry.

46 */

47 public abstract void setRevisionNumber(int rev)

48 throws CollaborillaException;

49

50 /**

51 * Returns the number of revisions in the LDAP directory.

52 *

53 * @return Number of available revisions

54 * @throws LDAPException

55 */

56 public abstract int getRevisionCount()

57 throws CollaborillaException;

58

59 /**

60 * Returns information of the current revision.

61 *

62 * @return Info of the current revision, currently RDF info. Will

63 * be probably changed in future.

64 * @throws LDAPException

65 */

66 public abstract String getRevisionInfo()

67 throws CollaborillaException;

68

69 /**

70 * Returns information of a current revision.

71 *

72 * @param rev

73 * @return Revision info

74 * @throws LDAPException

75 * @see #getRevisionNumber()

76 */

77 public abstract String getRevisionInfo(int rev)

78 throws CollaborillaException;

79

80 /**

81 * Sets the current revision to the most recent entry and copies all

82 * data into a new revision. Performs a setRevision(0).

83 *

84 * @throws LDAPException

85 */

86 public abstract void createRevision()

87 throws CollaborillaException;

88

B.1 Interface 41

89 /**

90 * Restores a revision and makes it the most recent revision.

91 *

92 * The current entry is copied to a revision, all fields removed and

93 * the fields of the to-be-restored revision are copied to the most

94 * recent entry.

95 *

96 * @param rev Revision which should be restored

97 */

98 public abstract void restoreRevision(int rev)

99 throws CollaborillaException;

100

101 /**

102 * Reads all URLs of the entry and returns a String array. If the

103 * Location attribute of this entry does not exist it will try to

104 * construct Locations by querying the entries of the parent URIs.

105 *

106 * @return Collection of URLs

107 * @throws LDAPException

108 */

109 public abstract Collection getAlignedLocation()

110 throws CollaborillaException;

111

112 /**

113 * Reads all URLs of the entry and returns a collection of Strings.

114 *

115 * @return Collection of URLs

116 * @throws LDAPException

117 */

118 public abstract Collection getLocation()

119 throws CollaborillaException;

120

121 /**

122 * Adds a new URL field to the LDAP entry.

123 *

124 * @param url URL

125 * @throws LDAPException

126 */

127 public abstract void addLocation(String url)

128 throws CollaborillaException;

129

130 /**

131 * Modifies an already existing URL in the LDAP entry.

132 *

133 * @param oldUrl URL to be modified

134 * @param newUrl New URL

135 * @throws LDAPException

136 */

137 public abstract void modifyLocation(String oldUrl, String newUrl)

138 throws CollaborillaException;

139

140 /**

141 * Removes a URL from the LDAP entry.

142 *

B.1 Interface 42

143 * @param url URL to be removed

144 * @throws LDAPException

145 */

146 public abstract void removeLocation(String url)

147 throws CollaborillaException;

148

149 /**

150 * Reads all URIs of the entry and returns a String array.

151 *

152 * @return Array of URIs

153 * @throws LDAPException

154 */

155 public abstract Collection getUriOriginal()

156 throws CollaborillaException;

157

158 /**

159 * Adds a new URI field to the LDAP entry.

160 *

161 * @param uri URI

162 * @throws LDAPException

163 */

164 public abstract void addUriOriginal(String uri)

165 throws CollaborillaException;

166

167 /**

168 * Modifies an already existing URI in the LDAP entry.

169 *

170 * @param oldUri URI to be modified

171 * @param newUri New URI

172 * @throws LDAPException

173 */

174 public abstract void modifyUriOriginal(String oldUri, String newUri)

175 throws CollaborillaException;

176

177 /**

178 * Removes a URI from the LDAP entry.

179 *

180 * @param uri URI to be removed

181 * @throws LDAPException

182 */

183 public abstract void removeUriOriginal(String uri)

184 throws CollaborillaException;

185

186 /**

187 * Reads all URIs of the entry and returns a String array.

188 *

189 * @return Array of URIs

190 * @throws LDAPException

191 */

192 public abstract Collection getUriOther()

193 throws CollaborillaException;

194

195 /**

196 * Adds a new URI field to the LDAP entry.

B.1 Interface 43

197 *

198 * @param uri URI

199 * @throws LDAPException

200 */

201 public abstract void addUriOther(String uri)

202 throws CollaborillaException;

203

204 /**

205 * Modifies an already existing URI in the LDAP entry.

206 *

207 * @param oldUri URI to be modified

208 * @param newUri New URI

209 * @throws LDAPException

210 */

211 public abstract void modifyUriOther(String oldUri, String newUri)

212 throws CollaborillaException;

213

214 /**

215 * Removes a URI from the LDAP entry.

216 *

217 * @param uri URI to be removed

218 * @throws LDAPException

219 */

220 public abstract void removeUriOther(String uri)

221 throws CollaborillaException;

222

223 /**

224 * Returns the RDF info field.

225 *

226 * @return RDF info field

227 * @throws LDAPException

228 */

229 public abstract String getContextRdfInfo()

230 throws CollaborillaException;

231

232 /**

233 * Sets the RDF info field.

234 *

235 * @param rdfInfo RDF info

236 * @throws LDAPException

237 */

238 public abstract void setContextRdfInfo(String rdfInfo)

239 throws CollaborillaException;

240

241 /**

242 * Removes an eventually existing RDF info field.

243 *

244 * @throws LDAPException

245 */

246 public abstract void removeContextRdfInfo()

247 throws CollaborillaException;

248

249 /**

250 * Returns the RDF location info field.

B.1 Interface 44

251 *

252 * @return RDF location info field

253 * @throws LDAPException

254 */

255 public abstract String getContainerRdfInfo()

256 throws CollaborillaException;

257

258 /**

259 * Sets the RDF location info field.

260 *

261 * @param rdfLocationInfo RDF location info

262 * @throws LDAPException

263 */

264 public abstract void setContainerRdfInfo(String rdfLocationInfo)

265 throws CollaborillaException;

266

267 /**

268 * Removes an eventually existing RDF location info field.

269 *

270 * @throws LDAPException

271 */

272 public abstract void removeContainerRdfInfo()

273 throws CollaborillaException;

274

275 /**

276 * Returns the description field of the LDAP entry.

277 *

278 * @return Description

279 * @throws LDAPException

280 */

281 public abstract String getDescription()

282 throws CollaborillaException;

283

284 /**

285 * Sets the description field of the LDAP entry.

286 *

287 * @param desc Description

288 * @throws LDAPException

289 */

290 public abstract void setDescription(String desc)

291 throws CollaborillaException;

292

293 /**

294 * Removes the description field of the LDAP entry.

295 *

296 * @throws LDAPException

297 */

298 public abstract void removeDescription()

299 throws CollaborillaException;

300

301 /**

302 * Returns the entry and its attributes in LDIF format. Can be used to

303 * export an existing entry from the LDAP directory.

304 *

B.2 Protocol 45

305 * @return LDIF data

306 * @throws LDAPException

307 */

308 public String getLdif()

309 throws CollaborillaException;

310

311 /**

312 * Returns the date and time of the creation of the LDAP entry.

313 *

314 * @return Timestamp

315 * @throws CollaborillaException

316 */

317 public Date getTimestampCreated()

318 throws CollaborillaException;

319

320 /**

321 * Returns the date and time of the last modification of the

322 * LDAP entry.

323 *

324 * @return Timestamp

325 * @throws CollaborillaException

326 */

327 public Date getTimestampModified()

328 throws CollaborillaException;

329

330 }

B.2 Protocol

The protocol of Collaborilla is held in clear-text and stateful. This means that
the information has to be set in a context before it can be stored or retrieved.
This is done during the initialization.

Initialization

After establishing a TCP connection, a Collaborilla session has to be initialized
with a command telling the Collaborilla service the URI of the entry in the
information directory.

URI <uri>

If the URI does not exist, the service will answer with an error. Should
the URI be created during the first access, the command is extended with the
optional parameter NEW:

URI NEW <uri>

The URI command can be sent whenever during a client/server session.
After execution the service-thread will operate in the newly set URI-context.

Commands

After setting the URI the main commands can be sent to the server. As there
are, grouped by the subject:

B.2 Protocol 46

Revision Handling

GET REVISIONCOUNT

GET REVISION

SET REVISION <rev nr>

GET REVISIONINFO <rev nr>

ADD REVISION

RST REVISION <rev nr>#

Locations

GET ALIGNEDURL

GET URL

ADD URL <url>

MOD URL <old url> <new url>

DEL URL <url>

Identifiers

GET URIORIG

ADD URIORIG <uri>

MOD URIORIG <old uri> <new uri>

DEL URIORIG <uri>

GET URIOTHER

ADD URIOTHER <uri>

MOD URIOTHER <old uri> <new uri>

DEL URIOTHER <uri>

RDF-information

GET CONTEXTRDFINFO

SET CONTEXTRDFINFO <rdf data>

DEL CONTEXTRDFINFO

GET CONTAINERRDFINFO

SET CONTAINERRDFINFO <rdf data>

DEL CONTAINERRDFINFO

Timestamps

GET TIMESTAMPCREATED

GET TIMESTAMPMODIFIED

LDAP Data Interchange Format (LDIF)

GET LDIF

Status Codes

The CollaCollaborillaocol defines also status codes, which are sent within sta-
tus messages from the service to the client, after the execution of a command.

The generic structure of a status message:

<protocol>/<version> <status code> <message>

B.2 Protocol 47

E.g. after the successful execution of a command the server will answer:

COLLAB/1.0 200 OK

Some of the status codes are borrowed from HTTP. The currently used list
of status codes and their meanings follows.

Status Code Description
200 OK, execution successful
201 Entry created

400 Bad request
401 Not authorized
403 Forbidden
404 Entry not found
408 Client timeout

500 Server error
501 Internal error
503 Service unavailable

600 Client disconnect
601 No such object
602 No such attribute
603 No such value
604 Modified
605 Server timeout
606 Attribute or value exists

999 Unknown error

Fig. B.1. The status codes of the Collaborilla protocol.

	Introduction
	Background
	Concept Browsing
	Terminology

	Problem definition
	Presentation of Information
	Technical Aspects

	Hypothesis
	Expected results
	Purpose
	Method
	How to read this document

	State of the Art
	Conzilla
	Identifying components
	Resolving
	Referring
	Collaboration

	Technologies
	Resolving and Referring
	Information Directory
	Data Storage

	Elements of Collaboration
	Collaborational Processes
	Containers in Pairs
	Loading context-maps
	Publishing context-maps

	Information to be Published
	Storage Independency
	Types of Information
	Identifiers
	Locations
	RDF-Information

	Versioning of Information
	Publishing Data at Remote Locations
	Appropriate Technologies
	Information Directory
	Services

	Realization
	Technologies to be used
	Building an Information Directory
	Tree Structure
	Data Modeling
	Versioning

	Components of Collaborilla
	Overview
	Service
	Client Interface
	Protocol
	Distribution and Documentation

	Integration into Conzilla
	Interfaces
	Graphical User Interface

	Limitations and Potentials
	Limitations
	Integration into Conzilla
	Remote Files and Versioning
	Rights Management

	Server Protocol Enhancements
	Stateless Protocol
	Locking
	Transactions
	Implementation as Web Service

	Conclusions
	Overview
	What has been done?
	What remains to be done?

	References
	Abbreviations
	Information Directory
	OpenLDAP Software Suite
	Object Classes and Attributes

	Collaborilla
	Interface
	Protocol

