An RDF Modification Protocol, based on the Needs of Editing Tools

Fredrik Enoksson', Matthias Palmér’, Ambjorn Naeve'

'Royal Institute of Technology(KTH/CSC),
Lindstedtsv. 5, 100 44 Stockholm, Sweden

{fen.matthias,amb } @csc.kth.se

Abstract. The use of RDF on the web is increasing, unfortunately the amount
of editing tools suitable for end users without knowledge of technicalities of
the language are not so common. We believe that a vital ingredient for the
editing tools to flourish is a working remote modification protocol. This will
allow editing tools to be developed separately from triple-stores and make
them more flexible and reusable. Several initiatives for remote modification
exists already but have not gained wide spread adoption. In this paper we will
show that most of them fall short when it comes to edit arbitrary RDF
construct, especially in combination with typical requirements of editing tools.
We will first list these requirements, then propose a solution and finally outline
an implementation. With this implementation we will also see how annotation
profiles, a configuration mechanism for RDF metadata editors, has the
additional feature of making modification requests very precise.

1 Introduction

RDF is increasingly used for expressing metadata on the web, consequently
appropriate end-user editing tools are in demand. To become more user-friendly such
editing tools need to hide the complex RDF-structure behind. This is typically
achieved by displaying the metadata in forms and focusing on a single or a few
central resources at a time. Beyond the user-interface layer such editing tools need to
access a triple-store where the RDF is stored. A common solution is to use the triple-
stores own API. Unfortunately this approach makes it harder to separate editing tools
from the underlying triple-store which has a negative impact on both the variety of
triple-stores as well as the success of well designed editing tools. Hence, a common
protocol for remote modification of RDF is desirable. Earlier initiatives, such as [1]
and [2], have not gained wide acceptance, probably due to the lack of a common
query language which more or less is a prerequisite. Now, when SPARQL and the
closely related SPARQL protocol for RDF endorsed by W3C has matured, the

mailto:amb}@csc.kth.se
mailto:fen@csc.kth.se

prospect for a wide acceptance of a remote modification protocol looks brighter. A
recent initiative, SPARUL [3], builds on top of SPARQL and looks promising,
especially since much of the work done for supporting SPARQL in a triple-store can
be reused. However, when taking a closer look, serious limitations from the
perspective of an editing tool surfaced. In this paper we will first consider the
requirements on a protocol that supports remote modification from the perspective of
an editing tool, then list possible approaches for a remote modification protocol, and
finally discuss the deficiencies in SPARUL and also outline a simple solution in
accordance with the introduced requirements for editing tools.

2 Remote Modification Protocol

The following list of requirements are not complete. Rather, they represent
requirements from the perspective of editing tools. Even though they might seem
quite natural and simple, they are not so easy to fulfill. Especially when taking into
account the common usage of blank nodes in RDF .

Resource centric — all kinds of subgraphs reachable (possible via intermediate blank
nodes) from a named node (resource identified through a URI) should be modifiable.
Concise modifications — The modification requests should be concise, not
inefficient by transferring to much or to little data at a time.

Without side effects — parts of the graph that are not to be modified should be left
intact. More specifically, you should not be required to have knowledge of all parts of
the graph to be able to modify it successfully.

Application independent — There should not be any built-in knowledge in the
protocol of specific properties or resources.

2.1 Different approaches for a Remote Modification Protocol

The naive approaches for remote modification, i.e. updating one statement at a time
or the entire RDF graph, are both flawed. Updating one statement at a time would
yield a chatty protocol where a single update operation could require hundreds of
requests. On the other side, updating the whole RDF graph could result in the transfer
of large amounts of data where large parts are sent unmodified back and forth. It
would also be problematic to support simultaneous updates with this approach as the
entire graph would have to be locked.

A better approach could be to send only deltas (differences) between RDF graphs
as described in [4]. The described strong delta is especially interesting as they can be
applied to subsets of the whole RDF graph. Unfortunately, the outlined algorithm
breaks down whenever there are blank nodes in the graph unless there are unique
ways to identify them. (Breaking or leaving orphaned blank nodes in the graph is of
course not acceptable, see the requirement 'without side effects’.) As the general
problem of identifying them requires finding the largest common subgraph which is a
graph isomorphism problem which in turn has been proven to be NP-complete, see
discussion in [4], another path has been taken. Instead, the algorithm relies on
knowledge of how the graph was constructed, i.e. according to which OWL ontology.
Hence, if there are inbound functional or outbound inversely functional properties
from a blank node to another identifiable node in the graph the blank node can also
be identified. Unfortunately, there are a lot of real world situations when the data
does not follow an OWL ontology, or even if there is an OWL ontology it may not be
known by the tool or simply that there is not enough functional or inversely
functional properties to uniquely identify the blank nodes. Taken together, this
approach seem to be too brittle to base a remote modification protocol on.

Another approach is sending an easily identified subgraph that encompasses the
modification. To avoid the problem of preserving identity of blank nodes, the
subgraph should be defined in such a way that it shares no blank nodes with the rest
of the graph. In the general case, this requirement could mean that the subgraph will
be large, or even identical to the whole graph, for example if the graph consists solely
of blank nodes. However, in nearly all real editing scenarios that we care about from
the perspective of the requirement 'resource centric' listed above, there is a mixture of
named nodes and blank nodes. Furthermore, the blank nodes are typically arranged
into tree like data-structures that are reachable from the named nodes and not
interconnected in a larger graph except via the named nodes. This is not something
we postulate here, but rather a consequence of an established best practice where you
name the resources that you express metadata on with URIs. From this observation
we realize that a useful method of calculating a subgraph is the anonymous closure
(or the closely related concise bounded descriptions), i.e. starting from a named
resource and then recursively including all statements until other named resources are
encountered.

It is important that the calculation of the subgraph is done deterministically, as
with anonymous closure, it has to be done twice, first to be accessed for remote
modification and second to be removed from the bigger graph before the modified
subgraph is inserted. The alternatives, to calculating the subgraph twice, are either
removing the subgraph directly or keeping a copy of the subgraph on the server side
for later removal. The first alternative will yield a graph where data is missing from

time to time, this should clearly be avoided. The second alternative requires a stateful
protocol and sessions to keep track of who initiated a modification on a specific
subgraph. This should also be avoided both to avoid complexity and to be compatible
with the principles of REST (sometimes referred to as the architecture of the web).
Hence, the preferred alternative is calculating the subgraph twice.

Even though the anonymous closure subgraph approach is simple and solves the
problem with graphs with blank nodes in it, it has to be complemented to allow
'concise modifications' of larger subgraphs including several named nodes. (See
above for the 'concise modification' requirement.) If you know the names of all the
named nodes you can simply take the anonymous closure of each and one of them.
However, this is not always the case, instead you typically only know the name of one
of the named nodes and how the other nodes are connected to it. In this case you have
to express the relationship from the known named node to the other nodes in a query
language and then require the anonymous closure of all the matches. With SPARQL
this can be almost achieved with graph patterns and the DESCRIBE option.
Unfortunately, DESCRIBE is formally undefined and left to the triple-store to
implement, however, for general purpose triple-stores the anonymous closure
algorithm or it's close counterparts seems to be frequently used.

2.2 Deficiencies in SPARUL

The main idea with SPARUL is to specify which statements to DELETE and which
to INSERT into a specific model. In it simplest form the statements are simply listed,
and the approach has the limitations of sending deltas without the elaborate scheme
to identify blank nodes as discussed above. Hence, in this simple form, statements
with blank nodes can be inserted but never removed or modified. In the more
advanced case the delete and insert blocks contain templates which generate the
statements to DELETE and INSERT via matching of a WHERE clause. Modifying
subgraphs containing blank nodes is in this case possible but awkward as: First, it
requires the WHERE clause to uniquely identify the right subgraph and capture the
blank nodes in appropriate variables. Second the templates in DELETE and INSERT
has to be carefully constructed to express the modification to be done. For simple and
well known metadata and specific applications this is perhaps feasible. But in the
general, the required algorithm would be complex and be done in every compliant
client that want to use the protocol. We argue that a better approach is to allow the
DELETE to be combined with DESCRIBE based on the variables matched in
WHERE. In this case it will be possible to delete a series of anonymous closures

according to the principle described above and then list the modified subgraph to be
inserted in INSERT.

3 Approach: calculating the subgraph twice

The solution suggested in the last part of section 2.1 will in the following subsection
be described in a more detailed way. In following section 4 an implementation
specific way of doing this in a dynamic way by reusing a configuration mechanism
for RDF metadata editors.

3.1 Retrieving a proper subgraph to edit

In order to find the proper subgraph a resource is needed as a starting point. This the
central resource from where to start the search of what related resources to be edited.
Since not all the resources connected to the starting point is known a pattern has to be
provided. This way arbitrary deep constructs can be retrieved by using the
DESCRIBE query in SPARQL. As said before in this paper DESCRIBE is not
formally defined and can therefore return different answer on different
implementations. For the purpose of retrieving a proper subgraph all the direct
properties of the resource, the Concise Bounded Description for the resource and all
properties for the resources matched in the pattern needs to be returned. In the
following an example will be given where we want to edit the dc:title, dc:creator and
the dc:subject for a given resource. The RDF graph on the remote storage is depicted
in figure 1

dc:description

A long time ago, in a galaxy...

http://www.example.com/lol

dc:title

Star Wars

http://example.com/SciFi

Figure 1: An example RDF graph on the remote storage

dc:subject

dc:creator

foaf:name

In order to retrieve the subgraph with a DESCRIBE-query the following question
is enough:

DESCRIBE <http://www.example.com/10l> ?creator
?subject

WHERE
{ OPTIONAL {
<http://www.example.com/lol>
<http://purl.org/dc/terms/creator> ?creator . }
OPTIONAL {
<http://www.example.com/lol>
<http://purl.org/dc/terms/subject> ?subject . }

From the pattern in this example, a model with all properties and values for the
resource http://www.example.com/lol will be returned, and, all properties and values

for potential resources matching the variables ?creator and ?subject. The reason that
we do not include a title property in the query is because it is a direct property. The
reason why we include subject and creator is that they might point to non-anonymous
resources. The use of OPTIONAL for every property also assures that if one property
will not match, a graph will anyway be returned with all the properties if such a
resource exist.

3.2 Updating the remote storage

When the retrieved model has been modified by the application the subgraph on the
remote storage is to be updated with these modification. An update-request to the
remote storage consists of two parts, first, an indication of which subgraph to remove
and second, a subgraph to be inserted as a replacement. This subgraph have to be sent
by serialising RDF into whatever serialisation is supported by the remote storage. The
subgraph to remove can on the other hand be indicated by a query (that is, the same
query used to retrieve it in the first place).

After the remote server have received the query to calculate the subgraph to
remove and the model to insert, it first need to calculate from the query what to
remove and from that remove the subgraph. After that the subgraph to be inserted can
be put into the model on the remote storage.

http://www.example.com/lo1
http://www.example.com/lo1
http://www.example.com/lo1
http://www.example.com/lo1

4. Implementation

An implementation of the described approach in section 3 have been made by the
authors of this paper. The remote storage used is version 3.1 of the Joseki' server and
the editor application was implemented with the SHAME? code library. It is a code
library used to built editors that can be configured with RDF metadata Annotation
Profiles, as described in [5] and [6].

An RDF metadata Annotation Profile consists of a Form Template and a Graph
Pattern, where the latter can be used to fairly easy create a query used to retrieve the
subgraph to edit from the remote storage. A Graph Pattern is expressed in an RDF
query language like SPARQL, it defines the structure of the metadata to be edited
and also act as a template when new metadata structures are to be created. The Graph
Pattern is a tree structure where the root-node variable matches the resource to be
edited and intermediate resources are variable nodes that matches nodes in the RDF-
model. A query to send to the remote storage can be constructed from the Graph
Pattern by removing the leafs from the Graph Pattern and send it as a DESCRIBE
query.

As the Annotation Profile is constructed from the perspective of usability for the
end users, you can expect that it encompasses a suitable subgraph to update in one
operation. And as the DESCRIBE query is constructed from the graph pattern it will
correspond to a concise modification (one of our requirements).

In the implementation this is sent to the Joseki server over HTTP, and returned is
the calculated subgraph, or an empty graph if no subgraph can be calculated.

Once the model has been retrieved it is edited by applying the method that is
described in [5] and [6]. The editing process, described shortly here, will match the
Graph Pattern against the retrieved subgraph, and create a binding to the matching
variables. The bindings are combined with the Form Template that makes it possible
to create a Graphical User Interface that also hides all the complexity from the end
user. This makes it possible for the end user to modify the subgraph in a rather
simple form-based manner.

When the changes to the subgraph are finished, ie the end user decides to save the
modifications, the modified subgraph is serialised into RDF/XML and the query to
calculate the original subgraph is expressed as a DESCRIBE query in SPARQL, as
said before is the same as the one to retrieve it. For the Joseki-server to perform the
update we have to implement and add a service called Update that is called with these
two arguments. On the Joseki server the operation of removing the calculated

1 http://www.joseki.org
2 http://kmr.nada.kth.se/shame

subgraph is performed first followed by inserting the modified subgraph. Joseki is
using Jena to handle RDF and the two operations is implemented using the methods
add and remove defined in the interface Model in the Jena API.

5. Conclusion

In this paper we have described several initiatives/approaches to remotely edit RDF
graphs, according to the requirements of being Resource centric, allowing Concise
modifications, being Without side effects, and being Application independent, We
specifically discussed a recent initiative, SPARUL, that are very promising but falls
short regarding handling blank nodes properly in combination with the requirements.
The only approach that could meet all the requirements for the needs of an editing
tool was the one described in section 3. The approach relies on that most graphs
consists of a mixture of blank and non blank nodes and that replacing whole
subgraphs calculated from one or a few starting points corresponds well to the extent
of a typical update. The update is performed by retrieving a subgraph, modifying it
and then submitting a the modified subgraph back to replace the original.

In addition to the modification mechanism, the paper has shortly outlined how to
use Annotation Profiles, a configuration mechanism for remote editing tools, to
retrieve the subgraph needed for editing. Consequently, if such an approach is used,
the modification protocol will work automatically, avoiding manual construction of
queries.

A rather important issue that is out of the scope of this paper is how to handle
concurrent changes of the same subgraph. The subgraph is not locked after the first
retrieval of it and changes could be done inside the same subgraph by another user.
Additional to the hassle of updates being overwritten falsely, this might lead to
inconsistencies in the RDF, since differences in the queries used to extract the
subgraph may lead to orphaned constructs. Some kind of additional restrictions on
the queries may be needed for a consistent locking mechanism to be feasible.

Acknowledgement

This work has been carried out with financial support from the EU-FP6 project
LUISA, which the authors gratefully acknowledge.

References

1. Seaborne, A.: An RDF NetAPI, Proceedings of the First International Semantic Web
Conference on The Semantic Web, 2002

2. Nejdl, W., Siberski, W., Simon, B., Tane, J.: Towards a Modification Exchange
Language for Distributed RDF Repositories. Proceedings of the First
International Semantic Web Conference on The Semantic Web, 2002

3. Seaborne, A., Manjunath, G., SPARQL/Update A language for updating RDF
graphs, http://jena.hpl.hp.com/~afs/SPARQL-Update.html

4. Berners-Lee, T., Connolly, D., Delta: an ontology for the distribution of differences
between RDF graphs, http://www.w3.org/Designlssues/Diff.

5. Palmér, M, Enoksson, F., Naeve, A., D3.2: Annotation Profile Specification,
Retrieved, August 30, 2007, from http://www.luisa-project.eu

6. Palmér, M, Enoksson, F., Nilsson, M., Naeve, A., Annotation Profiles: Configuring
forms to edit RDF, Proceedings of the Dublin Core Metadata Conference,
Singapore, 2007

http://www.w3.org/DesignIssues/Diff
http://jena.hpl.hp.com/~afs/SPARQL-Update.html
http://www.luisa-project.eu/
http://www.w3.org/DesignIssues/Diff

	2.1 Different approaches for a Remote Modification Protocol

