
Henrik Eriksson
Master's Thesis, Computer Science Program

CID, CENTRE FOR USER ORIENTED IT DESIGN

CID-216 ISSN 1403 -0721 Depa r tmen t o f Numer i ca l Ana l ys i s and Compu te r S i ence KTH

Query Management For The Semantic Web

Henrik Eriksson
Master's Thesis, Computer Science Program

CID, CENTRE FOR USER ORIENTED IT DESIGN

CID-216 ISSN 1403 -0721 Depa r tmen t o f Numer i ca l Ana l ys i s and Compu te r S i ence KTH

Query Management For The Semantic Web

Henrik Eriksson

Query Management For The Semantic Web,
Master's Thesis, Computer Science Program
Report number: CID-216

ISSN number: ISSN 1403 - 0721 (print) 1403 - 073 X (Web/PDF)
Publication date: February 2003

Reports can be ordered from:

CID, Centre for User Oriented IT Design
NADA, Deptartment of Numerical Analysis and Computer Science
KTH (Royal Institute of Technology)
SE- 100 44 Stockhom, Sweden
Telephone: + 46 (0)8 790 91 00

Fax: + 46 (0)8 790 90 99

E-mail: cid@nada.kth.se
URL: http://cid.nada.kth.se

Master’s Thesis:

Query Management For The Semantic Web

Henrik Eriksson

Computer Science Program, 160p
Department of Scientific Computing, Uppsala University

Supervisors:
Matthias Palmér & Ambjörn Naeve, Royal Institute of Technology

Examiner: Eva Pärt-Enander

April 3, 2003

3

Abstract

This master’s thesis has focused on the development of a query management system for the
Semantic Web. The latter is a project initiated by the World Wide Web Consortium, aimed
at providing better search capabilities to the World Wide Web through an improved metadata
framework based on the Resource Description Framework (RDF) standard.

The query management system is mainly designed to interface with the Edutella peer-to-
peer network, which is an international initiative to create an RDF-based network that allows
highly advanced searches.

The development of the query management system has involved the design of:

• The concept of template queries.

• An RDF schema for forms.

• The concept of query workflows.

• A Java class library for the query management system.

• An example implementation using the class library to add query management capabil-
ities to the Conzilla concept browser.

RDF forms and template queries have been used as a way to provide an easy and flexible
interface to complicated queries. Workflows have been introduced to generalize the concept
of the query process to ease future extensions, such as e.g. editing.

This work is part of the distributed interactive learning environment that is being devel-
oped by the Knowledge Management Research (KMR) group, Centre for User Oriented IT
Design (CID), at the Royal Institute of Technology (KTH), Stockholm.

Supervisors have been Matthias Palmér & Ambjörn Naeve, KTH, and examiner Eva Pärt-
Enander, Uppsala University.

4 CONTENTS

Contents

1 Abbreviations 6

2 Introduction 7
2.1 Administration . 7
2.2 The Problem . 7
2.3 How To Read This Paper . 8

3 Background 9
3.1 The World Wide Web . 9
3.2 Searching The Web . 9
3.3 The Semantic Web . 10

3.3.1 Definition . 10
3.3.2 Internet Metadata . 10
3.3.3 RDF . 10
3.3.4 RDF Classes . 12
3.3.5 RDFS . 13

3.4 Searching The Semantic Web . 14
3.4.1 Edutella . 14
3.4.2 Edutella Queries . 14
3.4.3 Advanced Edutella Queries . 15

4 Analysis 18
4.1 Query Management . 18

4.1.1 Query Complexity . 18
4.1.2 Expressiveness And Flexibility . 18
4.1.3 Template Queries . 18
4.1.4 Forms As Query Interfaces . 19
4.1.5 RDF Forms . 19

4.2 Workflows . 20
4.2.1 Queries And Editing . 20
4.2.2 The Query Process . 20
4.2.3 The Editing Process . 21
4.2.4 Workflows . 22

5 Design 23
5.1 The Query Management System . 23

5.1.1 Design Goals . 23
5.1.2 Query Management Overview . 23

5.2 RDF Forms . 24
5.2.1 Overview . 24
5.2.2 Template Queries . 24
5.2.3 RDF Form Classes . 24
5.2.4 RDF Form Properties . 25
5.2.5 RDF Form Example . 26
5.2.6 RDF Schema For Forms . 28

CONTENTS 5

5.3 Workflows . 30
5.3.1 Overview . 30
5.3.2 Workflow Components . 30
5.3.3 Workflow Actions . 31

5.4 Program Structure . 32
5.4.1 Overview . 32
5.4.2 The Workflow-Specific Classes And Interfaces 32
5.4.3 The Query-Specific Classes And Interfaces 33
5.4.4 The Form-Specific Classes And Interfaces 33

6 Implementation 35
6.1 Development Environment . 35

6.1.1 Open Source . 35
6.1.2 Java . 35
6.1.3 Ant . 35

6.2 External API:s . 35
6.2.1 Edutella . 35
6.2.2 Jena . 36

6.3 The Query Management API . 36
6.3.1 Overview . 36
6.3.2 Java Packages . 36

7 Query Management For The Conzilla Browser 37
7.1 Conzilla . 37
7.2 Example Query Execution . 37

7.2.1 The Edutella Provider . 37
7.2.2 An Example Query . 37
7.2.3 Query Execution . 38

8 Future Perspectives 41
8.1 Extensions . 41

8.1.1 Form Layout And Style . 41
8.1.2 RDF Workflows . 41
8.1.3 Editing . 42

8.2 Limitations Of The Edutella Query Language 42
8.3 Edutella Queries And RDFS . 42
8.4 Non-Authoritarian Metadata View . 43

8.4.1 External Annotation . 43
8.4.2 Metadata Authentication . 43

9 References 44

10 Acknowledgement 46

6 1 ABBREVIATIONS

1 Abbreviations

In this report the following abbreviations have been used:

API Application Programming Interface

CSS Cascading Style Sheets

HTML HyperText Markup Language

P2P Peer-To-Peer

PICS Platform for Internet Content Selection

RDF-QEL1-5 RDF Query Exchange Language, level 1, 2, ... , 5, respectively

RDF Resource Description Framework

RDFS Resource Description Framework Schema

SGML Standard Generalized Markup Language

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

W3C The World Wide Web Consortium

WWW World Wide Web

XML Extensible Markup Language

7

2 Introduction

2.1 Administration

This work is part of the distributed interactive learning environment that is being developed
by the Knowledge Management Research (KMR) group, Centre for User Oriented IT Design
(CID), at the Royal Institute of Technology (KTH), Stockholm.

Supervisors have been Matthias Palmér & Ambjörn Naeve, KTH, and examiner Eva Pärt-
Enander, Department of Scientific Computing, Uppsala University.

2.2 The Problem

The Semantic Web is a project initiated by the World Wide Web Consortium that aims to
provide a better way of describing resources on the World Wide Web using the Resource
Description Framework (RDF) standard (see Section 3, Background, for details). RDF-
based metadata has significant advantages, such as enabling accurate and arbitrary complex
searches.

Edutella is an international initiative that builds on the RDF standard to implement a
Semantic Web in the form of a peer-to-peer network (see Section 3.4.1, Edutella, for de-
tails). Searches on the Edutella network is done by RDF-based queries that are similar to
Datalog/Prolog programs.

The Knowledge Management Research (KMR) group at the Centre for User Oriented
IT Design (CID) at the Royal Institute of Technology (KTH), Stockholm, has developed a
concept browser called Conzilla that supports navigation in an atlas of context maps [3] [4]
[5]. A context map is a set of concepts and conceptual relations that are presented together
in order to provide the user with a sense of the context in which a piece of information is
presented. This has general advantages, but in particular it makes it a useful educational
tool.

Conzilla has recently been modified to work on RDF-based metadata and it would be
useful to be able to interface with Edutella peers, since that would combine the user-centered
view of Conzilla with the powerful search capabilities of an RDF metadata network.

The aim of this thesis has been to create a query management system that can be used
to add Edutella search capabilities to the Conzilla browser. Since Edutella queries has the
potential of extreme complexity, the user interface has a high priority.

To summarize, the aim of this thesis has been the design of:

• A query management system.

• A user interface to queries, with emphasis on simplifying complex queries.

• An interface to the Edutella peer-to-peer network.

8 2 INTRODUCTION

2.3 How To Read This Paper

The following is an outline of the sections of this thesis:
Section 3, Background, is a description of the World Wide Web, its limitations, and the

improvements to it that are introduced by the Semantic Web initiative. This section tries to
illuminate the need of some kind of query management for the advanced query possibilities
that follows from a structured metadata system.

Section 4, Analysis, examines the query process, discusses problems with it and how it
relates to the process of metadata editing. This section tries to motivate the design decisions
made for the query management system described in Section 5.

Section 5, Design, describes the design of the query management system.
Section 6, Implementation, provides brief comments about the development environment

in which the implementation of the query management system was made.
Section 7, Query Management For The Conzilla Browser, describes the query management

system applied to the concept browser Conzilla.
Section 8, Future Perspectives, is a discussion of the possible extensions to the query

management system and related issues.

9

3 Background

3.1 The World Wide Web

The Internet and the World Wide Web (WWW or just “the web”) today consists to a large
extent of a distributed collection of HyperText Markup Language (HTML) pages. The WWW
was developed in the early 1990s at the European Organization for Nuclear Research (CERN)
in Geneva, Switzerland, as an effort to ease the sharing of information among their many
different computer systems [10]. The basis for the WWW was HTML, which was meant
to be a simple format language that structured the information in a document into logical
components such as headings, paragraphs, and links [12].

The WWW was a huge success and as it gained a more widespread use the focus shifted
from the early content-based view to concerns about the appearance of web pages. HTML
version 2 [13] and 3 [14] contained a lot of new layout features which, together with script
languages and Java applets, increased the interactive capabilities as well as the visual expres-
siveness of the web.

3.2 Searching The Web

With the growth of the web the amount of available information has become too large to
browse manually. To find information about a particular topic various search engines have
to be used. A major problem for these search engines is that in order to find relevant results
they have to scan HTML documents to find words or phrases that match keywords used to
describe the topic.

The first problem with this approach is that it is difficult to describe a topic with keywords
that match the content of all relevant pages to a particular topic without also matching a
lot of unrelated pages. A keyword describing a topic might occur in pages unrelated to
the topic, and reversely, relevant pages don’t necessarily contain the chosen keyword. The
task of matching keywords with page content without generating “false positives” is further
complicated by the fact that current web pages intermingle content with layout information.

Another even bigger problem with this approach is that the content of some topics isn’t
text at all. When searching for any type of media files, programs, or other non-textual content,
a search engine is totally dependent on the author of the content pages to label the content
appropriately.

The problem with intermingled content and layout information can be solved by using
a separate layout/style language like e.g. Cascading Style Sheets (CSS) [1]. This leaves
the main content page free to concentrate on content while a separate document provides
the layout and style directives. HTML version 4 [15] has taken steps in this direction by
deprecating a lot of style tags and instead referring to the use of style sheets (e.g. CSS).
This has the additional benefit of providing a possibility for different layout information for
different audiences, such as voice commands or braille device instructions for blind people.

The problem with non-textual content is trickier. The only really good solution is ade-
quate documentation of the content. This also addresses the problem with search accuracy.
Searching information about content instead of the content itself is much easier, provided the
information about the content is accurate.

10 3 BACKGROUND

3.3 The Semantic Web

3.3.1 Definition

The purpose of the “Semantic Web” is to be an extension of the current web that provides
well-defined information about resources. From the official web site, maintained by the World
Wide Web Consortium (W3C), the following definition can be found [22]:

The Semantic Web is the abstract representation of data on the World Wide
Web, based on the RDF standards and other standards to be defined. It is being
developed by the W3C, in collaboration with a large number of researchers and
industrial partners.

By providing a flexible and extendable way of formally describing resources, the Semantic
Web enables authors to document their content so that search engines can find it in an
accurate and efficient way.

3.3.2 Internet Metadata

Metadata means data about data. In this context it is used to denote the information used
to describe web content. Analogous to the benefits of separating layout information from
content, there is even greater benefits to be had from separating information about content
from the content itself.

An early form of metadata was the use of the <meta> tag in HTML. This can be used to
give information about a web page such as e.g. the author of the page or a list of keywords.
For textual content this information can be described in the content of the page itself, but it is
easier for a search engine to know that the text string “John Smith” represents the author of
the page when it is labelled within a <meta> tag as “author” than when found in the content
as “Hi my name is John Smith. I wrote this page!”.

The <meta> tag is used by the Platform for Internet Content Selection (PICS) which gives
web page authors a way to label and categorize their pages with regard to their content [18].
The main purpose of PICS is to provide a way to label pages so that parents can filter out
content unsuitable for children.

The HTML <meta> tag approach is a common general way of presenting metadata; as
label-value pairs, e.g. “author” = “John Smith”. In order for this to be understandable
by search engines, the labels must be well known. If e.g. everyone agreed upon including
“author”, “creation date”, and “keywords” as metadata about all web pages then it wouldn’t
be of any use to a search engine if someone included their own metadata label “last edited”
or even a variant or specialization of the established metadata labels, such as “creator” or
“co-author”.

The problem thus becomes, which metadata properties to support? Regardless of how
cleverly chosen, the set of metadata properties will always be insufficient for some applications.
It’s impossible to anticipate the need of everyone. What’s needed is a way to extend the set
of known metadata labels without breaking the backward compatibility. Enter RDF!

3.3.3 RDF

The Resource Description Framework (RDF) was first presented in 1997 as an alternative way
of representing information in general and metadata in particular [19] [20]. It is an information

3.3 The Semantic Web 11

description language that addresses many of the problems with metadata presentation.
RDF is:

• Based on simple principles.

• Flexible.

• Extendable without breaking backward compatibility.

• Can be expressed in well-known formats such as XML.

Before elaborating on these points a short introduction to RDF is appropriate. At its
core RDF is built up by triples. These triples can be viewed as a graph where each triple is
represented by an arrow from one node to another. Figure 1 shows the simplest RDF graph
possible.

predicate
objectsubject

Figure 1: A simple RDF graph.

The semantics of this should be interpreted as something (the subject) has a property
(the predicate) with the value “object”. A concrete example would be the case depicted in
Figure 2.

http://example.net/mypage John Smith
dc:creator

Figure 2: The dc:creator property.

This would mean that the page http://example.net/mypage was created by John Smith.
Note that the author John Smith is written within a square box as opposed to the page
http://example.net/mypage, which is written inside an ellipse. This is the RDF graph
convention to distinguish between resources (things that are described with URI:s1) and
literals—sequences of letters and numbers that don’t represent unique web locations.

The other thing to note here is the way the property dc:creator is written. The
“dc:” part is an abbreviation for http://purl.org/dc/elements/1.1/. RDF only allows
resources as properties because literals are not unique and different people could mean dif-
ferent things with e.g. “creator”. By using a unique resource as the property you have
the opportunity to give the property an exact definition. The object of the RDF property
http://purl.org/dc/elements/1.1/creator is defined by the Dublin Core Metadata Ini-
tiative as

An entity primarily responsible for making the content of the resource.

1The superset of URL:s and URN:s [25] [26].

12 3 BACKGROUND

The Dublin Core Metadata Initiative is an organization that among other things have
defined some basic properties that are widely used and recognized [6].

Another reason for distinguishing between resources and literals, besides resources being
unique, is that resources, as opposed to literals, can be the subjects of additional triples.
There are two reasons why we would want to use a resource instead of a literal to denote
the creator of the page http://example.net/mypage. The first is that, as mentioned before,
string literals are not unique. There is certainly more than one person named “John Smith”.

The other reason is that we might want to add additional information about the author,
such as e.g. e-mail address and phone number. In Figure 3, a unique dedicated resource,
http://example.net/employees/johnsmith, has been introduced to represent the creator
to which more information can be added as new triples. The properties are made up example
properties, where “ex:” is an abbreviation for http://example.net/rdf/.

John Smith

dc:creator

http://example.net/mypage

ex:hasName

ex:hasPhoneNumber

ex:hasEmail

john.smith@example.net

http://example.net/employees/johnsmith

012−345678

Figure 3: Resources can be both objects and subjects.

3.3.4 RDF Classes

So far we haven’t touched upon the real benefits of RDF. What about the ability to extend
RDF properties without breaking backward compatibility?

The extensibility of RDF is linked to another feature, classes. Each resource in RDF can
belong to one or more classes. This is indicated with the predefined RDF property rdf:type,
where “rdf:” is an abbreviation for http://www.w3.org/1999/02/22-rdf-syntax-ns#. In
Figure 4 the resource http://example.net/employees/johnsmith is typed to be an instance
of the fictive class ex:Person, where, again, “ex:” is an abbreviation for the fictive base URI
http://example.net/rdf/.

If we now have an established search engine that knows about the dc:creator property
and resources of type ex:Person, how do we extend this metadata set for use in newer search
engines while keeping backward compatibility with the old search engine? As an example
extension, consider the case where we want to express that someone is a special type of
creator, e.g. a graphic designer, and that somebody is a special type of person, e.g. an
employee. What’s needed is RDFS.

3.3 The Semantic Web 13

John Smith

dc:creator

http://example.net/mypage

rdf:type

ex:hasName

ex:hasPhoneNumber

ex:hasEmail

john.smith@example.net

ex:Person

http://example.net/employees/johnsmith

012−345678

Figure 4: Class membership with the rdf:type property.

3.3.5 RDFS

The Resource Description Framework Schema (RDFS) is an extension to RDF that describes
how to define RDF vocabularies using RDF itself [21]. It defines, among other things, two
important properties, rdfs:subClassOf and rdfs:subPropertyOf, where “rdfs:” is an
abbreviation for http://www.w3.org/2000/01/rdf-schema#. The semantics of the property
rdfs:subClassOf is that it denotes a specialization of a more general class. If a resource is
of type T and T is a rdfs:subClassOf class C, then the resource must also be of type C. In
analogy, rdfs:subPropertyOf denotes a specialization of a more general property.

If we return to our earlier example, we can use RDFS to extend the metadata set without
breaking the backward compatibility.

http://example.net/mypage

dc:creatorex:graphicDesigner
rdfs:subPropertyOf

rdfs:subClassOf

rdf:type

http://example.net/employees/johnsmith
ex:graphicDesigner

ex:Person

ex:Employee

Figure 5: Using RDFS to extend metadata properties.

In Figure 5, we have expressed that the individual, John Smith, is the graphic de-
signer (ex:graphicDesigner) of the page http://example.net/mypage and that he is an
ex:Employee. If this was the only information available we would certainly have broken the
backward compatibility, since the old search engine knows of neither graphic designers nor

14 3 BACKGROUND

employees. But in Figure 5 we have included the information that a graphic designer is a
subproperty of the well-known property, dc:creator, and that ex:Employee is a subclass of
ex:Person.

By observing that ex:graphicDesigner is a subproperty of dc:creator, the old search
engine knows that John Smith is some kind of creator of http://example.net/mypage,
and although it doesn’t know what kind of creator a graphic designer is, this doesn’t break
backward compatibility—it only means that it can not utilize all information available.

Analogously, the old search engine can deduce that John Smith is an ex:Person, since an
ex:Employee is a subclass of ex:Person.

3.4 Searching The Semantic Web

3.4.1 Edutella

The Edutella project [7] is an example of a Semantic Web implementation. It is an inter-
national effort to create a metadata infrastructure for peer-to-peer (P2P) networks based on
RDF [8]. Although generally applicable, Edutella is mainly (at least initially) aimed towards
libraries, universities, and other educational institutions.

The Edutella project is providing an application programming interface (API) and ex-
ample applications that can act as producers and consumers of metadata. Consumers send
queries to the producers about what information they are interested in, and the producers
search their RDF-based metadata and return the relevant results.

The queries sent between the Edutella consumers and producers are themselves expressed
in RDF and their syntax is defined by the Edutella project. The main reason to code the
queries in RDF is that they can be stored and treated as any other RDF data by the appli-
cations. This means that you could even ask queries about other queries!

3.4.2 Edutella Queries

There are different levels of Edutella queries that differ in their expressiveness and com-
plexity. At the simplest level, the desired information is mimicked and the unknowns are
replaced with resources of the type edu:Variable, where “edu:” is an abbreviation for
http://www.edutella.org/edutella#.

edu:QEL1Query

resource2resource1

edu:Variable

dc:subject

rdf:type

book

rdf:type

edu:hasVariable

Figure 6: A simple Edutella query.

Figure 6 shows an example of the simplest type of Edutella queries. “QEL1” stands for
query exchange language, level 1. This query states, “give me all resources about books”.
This approach is easy to write and understand, but has limitations. Disjunctions, e.g. “give

3.4 Searching The Semantic Web 15

me all resources about books or magazines”, are impossible to express and must be separated
into two distinct queries.

Edutella query exchange language, level 2 (RDF-QEL2) adds disjunctions, but it’s not
until we reach level 3 (RDF-QEL3, adds negation) and above that we have a fully expressive
query language.

3.4.3 Advanced Edutella Queries

Edutella query exchange language, level 3 (RDF-QEL3) and above are approximately equiva-
lent to Prolog/Datalog. RDF-QEL4 and RDF-QEL5 add different levels of recursion to allow
transitive closure.

Before going further, there are two new RDF concepts that need to be defined—sequences
and reified triples.

In order to describe ordered sequences, RDF provides a special class, rdf:Seq. Resources
of this type can have properties rdf: 1, rdf: 2, etc., which reference an ordered sequence of
items. If the actual index of the sequence member doesn’t matter, RDFS adds a property,
rdfs:member, which indicates an unspecified sequence member. As an example of rdf:Seq
Figure 7 shows the alphabetically ordered sequence of apple, banana, and pear.

resource

pear

banana

apple

rdf:Seq

rdf:_2

rdf:_3

rdf:_1

rdf:type

Figure 7: An ordered RDF sequence.

QEL3 and above need to refer to triples in addition to resources and literals. This can
only be done indirectly by creating a resource that references all three parts of the triple—
subject, predicate, and object. RDF defines this kind of indirect resource to be of the type
rdf:Statement, and this indirect referencing of the different parts of a triple is called to reify
the triple. RDF defines the properties of the rdf:Statement that refer to the different parts
of the reified triple as rdf:subject, rdf:predicate, and rdf:object, respectively. The
Edutella edu:RDFReifiedStatement class is an extension of the rdf:Statement class, and is
used in the same way. Figure 8 shows an RDF triple and its reification.

Edutella RDF-QEL3 queries are based on predicates and rules analogous to Prolog pro-
grams, and can express queries that are impossible to manage with simple free-text search
engines. As a simple example, imagine that we would like to find out about books written
by AI book authors. Note, that we can’t just search for “AI” and “books”, since the authors

16 3 BACKGROUND

resource2 rdf:Statement

resource Example

rdf:object

rdf:type

rdf:predicaterdf:subject

dc:title

Figure 8: An RDF triple and its reification.

of AI books may well have written books about other topics, and we’re probably even more
interested in those, judging by the way we phrased our request.

There’s no way to phrase the question accurately with a free-text search engine. Instead
we would have to separate the search into different parts. We would indeed have to search
for “AI” and “books” to find the AI book authors, and then do a book search for each of the
authors we find.

In Prolog we would phrase the query by defining one or more rules that logically captures
the semantics of our query, together with a query predicate that we can use to ask the question:

AIQuery(x):- isBook(x),
isBook(y),
hasSubject(y, ‘‘AI’’),
hasCreator(x, z),
hasCreator(y, z).

?- AIQuery(x).

The Edutella RDF-QEL3 query is exactly analogous to this Prolog program. The RDF-
QEL3 query resource has a property edu:hasQueryLiteral with a value that corresponds
to the Prolog query literal, AIQuery(x). Furthermore, the RDF-QEL3 query resource has a
edu:hasRule property with a value that corresponds to the definition of the AIQuery(x) pred-
icate, and in turn has edu:hasHead and edu:hasBody properties with values that correspond
to the different parts of the Prolog predicate clause.

Although the Edutella RDF-QEL3 query is exactly analogous to the Prolog program,
since it is coded in RDF with type definitions and triple reifications, its complete description
becomes considerably more complex, as clearly indicated by Figure 9.

3.4 Searching The Semantic Web 17

edu:RDFReifiedStatement

edu:Variable

x

y

z

resource9

resource8

resource7

resource6

resource5

resource3

resource2

resource1

edu:QEL3Query edu:StatementLiteral

edu:Rule

rdf:type

Book

dc:creator

dc:subject

AI

AIQuery rdf:Seq

resource4

rdf:typerdf:type

edu:hasQueryLiteral

edu:predicate

edu:hasRule

rdf:type

edu:arguments

rdf:type

edu:hasBody

edu:hasBody

edu:hasBody

rdf:type

rdf:subject

rdf:object

rdf:type

rdf:type

rdf:subject

rdf:predicate

rdf:object

rdf:subject

rdf:subject

rdf:type

rdf:object
rdf:predicate

rdf:predicate

rdf:object

edu:hasBody

rdf:subject

rdf:predicate

rdf:_1

edu:hasBody

edu:hasHead

rdf:object

rdf:predicate

Figure 9: An Edutella RDF-QEL3 query.

18 4 ANALYSIS

4 Analysis

4.1 Query Management

4.1.1 Query Complexity

An Edutella query is essentially a Prolog program (see Section 3.4.3). For all but the simplest
queries the RDF representation becomes rather complicated (see Figure 9).

For a novel user, the task of writing the query in Figure 9 just to do a search would be
a rather daunting task. To the novice, even the RDF graph of the simplest Edutella query,
such as e.g. that depicted in Figure 6, would not be trivial.

For advanced users, e.g. programmers etc., this would be little more than a nuisance, but
if the query management system developed in this thesis project is going to be included in
a browser such as Conzilla, which aims to cater for the need of many, there has to be some
simplifying mechanism available.

The complexity of the query creation process can be reduced by a good editor. RDF triples
describing the type information about a resource can be replaced with special formatting such
as showing the resource with a special color or font. Some type information can be automated,
e.g. when adding a edu:hasHead property, the resource that is the value of that property has
to be of the type edu:StatementLiteral.

But even if all RDF-specific complexity is removed, the inherent complexity due to the
semantics of the query remains. There is no way around this. It’s not possible to have a
Prolog program without the complexity of a Prolog program.

So, is the only option for reducing the complexity of a query to reduce the inherent
semantic complexity of the query, i.e. ask a simpler question? That would be discouraging,
because it would mean that all but the most advanced users would miss out on the powerful
search possibilities an RDF-based metadata system provides. Fortunately, this is not the
case.

4.1.2 Expressiveness And Flexibility

An Edutella query has great expressiveness and flexibility. These are not the same thing.
The expressiveness of the query is, in this context, used as a measure of how complex search
conditions we are able to express with the query. The different query language levels of the
Edutella system are characterized by an increasing expressiveness with higher query language
level.

The flexibility of a query is in this context used to describe how fixed or free it is. Before
the query is created the flexibility is maximal—it can be used to express most anything. But
after it’s created the flexibility is zero, its rules and query literals are permanently fixed. This
may seem self-evident and the concept of flexibility appear superfluous, but it’s crucial for
the next topic in the quest for query simplification, template queries.

4.1.3 Template Queries

As mentioned before, creating an Edutella query is in many respects analogous to writing a
Prolog program and the execution of the query is analogous to running the program. Although
possible for the advanced users, not even programmers would like to write programs from
scratch every time they wanted to use them.

4.1 Query Management 19

Programs normally interact with the user. In the case of a simple Prolog program, the
interaction can consist of giving the query literal some appropriate arguments. This approach
is clearly less flexible than completely rewriting it for the task at hand, but it doesn’t mean
that the expressiveness is sacrificed. The ability of a ready-made program to express the
solution to a task does not have to be any less than that of a newly written program.

The concept of sacrificing flexibility to reduce complexity can be applied to queries in the
form of template queries. A template query is a query where the user gives arguments which
replaces parameter variables in the query. This is the same as passing arguments to a query
literal in Prolog. By letting the user choose from a set of cleverly designed premade template
queries, the difficulty of performing a search is reduced to the design of the user interface to
the template queries.

For a given subset of tasks, this gives even the novice user access to queries of arbitrary
expressiveness. As stated, this comes at the price of flexibility—when a search is needed for
which there exists no template query, there is no substitute for creating the query from the
ground up. Again, this parallels the situation with programs—when a task needs to be solved
for which there exists no program, the program has to be written in order to solve the task.

This doesn’t mean that a new query has to be written completely from scratch. Since
Edutella queries are RDF-based, it’s no problem storing them for later reuse, modification,
or combination into new queries. This is the beauty of letting the Edutella queries be coded
in RDF—they become part of the world upon which they act.

4.1.4 Forms As Query Interfaces

As seen by e.g. Figure 9, the RDF graph of an Edutella query isn’t very helpful for under-
standing what it does. Of course that information can be deduced by analyzing the graph,
but if this query was to be the basis for a template query, the nitty gritty details of the query
rules wouldn’t really be needed by the user. Just as a user of a computer program normally
has no interest in the source code of the program, the user of a template query only needs to
know what the query does and what parameters are available for changing.

Forms are an intuitive and easy way of interacting with a user. It can be as simple as the
single text field for entering search strings that is used by most free-text search engines on
the web today. Forms also make it easy to provide explanatory text to the user in the form
of headlines and pop-ups.

The problem with forms as a user interface for template queries is that almost all queries
will need completely different forms. It’s not possible to create a general form that will fit
all template queries. This makes it almost hopeless to hardcode the form into the query user
interface. The solution is to define a language for describing forms, and as stated before, this
is a task to which RDF lends itself very well.

4.1.5 RDF Forms

If forms were coded in RDF they could be stored together with the template queries. With
a formal RDF grammar for forms defined, there could be a user interface generator that was
able to translate RDF forms into the corresponding form user interface. Forms could then be
stored, reused, and combined into new forms like all other objects coded in RDF.

Instead of rewriting and recompiling the code every time a new form or query is needed,
a new RDF form and query is specified, which is a significantly less complicated task.

20 4 ANALYSIS

4.2 Workflows

4.2.1 Queries And Editing

Although the most immediate use of queries are for finding resources as specified by users, it’s
not their only applicability. When editing an existing RDF database, as opposed to creating
one from the start, searches have to be made in order to find the resource to be edited along
with already existing metadata involving it.

Editing RDF databases is outside the scope of this thesis, but editing is a natural and
important extension to this work that will be added at some point. By analyzing the sim-
ilarities and differences between queries and editing, the query management system can be
designed to be more easily extended.

4.2.2 The Query Process

substitution query execution

RDF form RDF query

input

RDF form

input

Figure 10: Activity diagram for a template query process.

Figure 10 shows an activity diagram of a typical template query process, assuming RDF
forms are used as a basis for the user interface. Rounded boxes mark actions and rectangles
objects. Inward arrows to a box means input data for the action, and outgoing arrows means
output data. The data objects sent between actions have been omitted for brevity.

The activity diagram attempts to illustrate the different parts of the template query
process:

1. A user interface based on an RDF form is used to collect input data from the user, e.g.
a search term.

2. The user input data is used as arguments to be substituted for the parameter variables
of an RDF template query.

3. The query that is the result of replacing its parameter variables with user arguments is
executed.

4. The results of the executed query is displayed via a form that optionally takes new user
input for further processing.

The last point might need some comments. The corresponding action is termed input
rather than e.g. result display, because the most general approach would be to let the
user decide if the result should be used for further processing, such as e.g. refining the query.
In Section 5 it will be shown that RDF forms are a rather useful basis for displaying results
in addition to being used for user interface generation.

4.2 Workflows 21

4.2.3 The Editing Process

RDF mapping graph

input

RDF form

input

RDF queryRDF form

query executionsubstitution

query executionsubstitution

RDF query RDF form

inputmapping

store

Figure 11: Activity diagram for an RDF edit process.

Figure 11 shows an activity diagram of a typical RDF editing process. Again, as in the
query activity diagram, rounded boxes mark actions and rectangles objects. Inward arrows
to a box means input data for the action, and outgoing arrows means output data. The data
objects sent between actions have been omitted for brevity.

The activity diagram illustrates the different parts of an RDF editing process:

1. A user interface based on an RDF form is used to collect input data from the user about
which resource to edit.

2. The user input data is used as arguments to be substituted for the parameter variables
of an RDF template query that is designed to find resources to be edited.

3. The query that is the result of replacing its parameter variables with user arguments is
executed.

4. The resulting resource candidates that were found when executing the query is displayed
via a form so that the user can choose the resource to be edited.

5. A mapping graph is used to map the chosen resource to a parameter variable in a new
template query which is designed to find metadata about the resource.

6. The chosen resource is used as a substitution argument for the mapped parameter
variable in the query.

22 4 ANALYSIS

7. The substituted query is executed.

8. The found metadata involving the resource is displayed via a form so that the user can
edit it.

9. The edited metadata is stored.

The reason for the variable mapping in step 5 is to specify which parameter variable in
the new query the resulting resource should be substituted for. This information can not be
hardcoded, since it would lock the forms and queries involved. By coding this information
in an RDF graph, it can be stored and used in the same flexible way as the RDF forms and
RDF queries.

4.2.4 Workflows

By comparing Figure 10 and Figure 11 two things can be noted:

• Queries are a subset of RDF editing. The first half (step 1-4) of the editing process is
a query.

• By looking at the subparts of the two processes, it’s clear that the overlap is even
greater. The input, substitution, and query execution steps occur in the query
process and several times in the editing process.

If the query management system is designed with this in mind, it will be easier to extend
to include editing, with a minimum of duplicated effort. If the parts of the query process
system is modularly designed, they can be reused when designing the editing extension.

The notion of a workflow could itself be abstracted into an independent entity. With
cleverly chosen building blocks based on the process parts in Figure 10 and Figure 11, there
wouldn’t be any need to distinguish between a query process and an editing process. All
processes would be some kind of workflows with elements of editing, querying, and perhaps
additional future components when the need arises.

One could even take this further and design a grammar for coding the workflows in
RDF. With a workflow interpretation engine that translates RDF workflows into processes,
designing a new process would consist of creating a new RDF workflow graph. This would
give workflows the benefits of everything else coded in RDF—storage, reuse, recombination
into new workflows. It would be the RDF equivalent of a scripting or macro language.

In this work the first steps towards this goal will be taken, but the full implementation is
outside the scope of the thesis.

23

5 Design

5.1 The Query Management System

5.1.1 Design Goals

The aim of this project is to create a query management system that is:

• Easy to use.

• Flexible.

• Extendable.

The powerful search capabilities that come with RDF-based metadata mean that it’s
possible to state potentially very complex queries. A very important part of the overall
usefulness of the query manager is the ability to provide some simplifying mechanism for
complex queries.

Flexibility means making as few assumptions as possible. As much implementational
detail as possible should be kept unexposed in order not to limit alternative future solutions.
This is a general rule of thumb that applies to data structures as well as algorithms.

Regarding RDF, queries are needed in other tasks than pure searching, such as e.g. editing.
The class library used to build this query management system will be extended to include
editing at some point. Knowing this, it is desirable to make the management system extensible
to avoid having to rewrite a lot of code whenever new features are added.

5.1.2 Query Management Overview

There are three main concepts that have guided the development of this query management
system:

• Template queries.

• RDF forms.

• Workflows.

Template queries is a way of reducing query complexity without also reducing the possi-
bility for novel users to perform advanced queries. Of course this comes at the price of being
limited to execute only the types of queries for which templates exist.

RDF forms is a supplement to template queries. Due to the complexity of RDF graphs
for advanced queries, there is a need for a simpler user interface. Forms are a natural choice,
but since the queries can be very different there would have to be a different form for every
query. By coding the forms in RDF and having an RDF form interpreter that translates RDF
forms to user interfaces, hardcoding forms can be avoided.

Workflows are a generalization of the query process in order to make it more extendable.
By defining a workflow as a sequence of subparts of the query process, extending workflows to
include e.g. editing means only to add the subparts of the editing process that’s not already
included in the query process.

24 5 DESIGN

5.2 RDF Forms

5.2.1 Overview

RDF forms are forms coded in RDF that can be translated into form user interfaces. The
rationale for using forms as query user interfaces has been detailed in Section 4.1.

In short, an RDF form is used as a description to a form user interface for a specific
template query. After presenting the parameter variables of the query to the user, the user
input is collected and substituted for the parameter variables of the query, which is then ready
to be executed.

5.2.2 Template Queries

The reason template queries are included here is that RDF forms and template queries are
tightly coupled.

Template queries are queries where at least one variable acts as a parameter variable. By
substituting the parameter variables with argument values, the template query is converted
into a query that is ready for execution.

In order to define a template query, its parameter variables need to be specified. This
could be done by defining a new parameter variable type that extends the original variable
type. Subclasses of the parameter variable type could give further information about the type
of values that could be substituted for them.

This isn’t necessary though. As seen in Section 4.1, template queries need associated RDF
forms. An RDF form needs to keep references to the parameter variables its various parts
refer to. Since the information about the available parameter variables of a template query
is stored in its associated RDF form, there is no need to store that information in the query
itself. This makes sense, since the information about the parameter variables and the types
of values that constitute allowable substitutions is only relevant when getting the information
from the user, i.e. when using the form.

This has the consequence that there is no difference between a template query and an
ordinary query. Template queries are simply the queries associated with RDF forms, and
parameter variables are the query variables referenced by the different parts of a form. Pa-
rameter variables, for which the user doesn’t specify values, are simply left as variables in the
query. The more variables in a query for which values are substituted, the more specific the
result of executing that query will be.

5.2.3 RDF Form Classes

The RDF form classes that are described here are the resource types that are specific to RDF
forms. General RDF classes such as rdf:Alt (see Section 5.2.5) etc. are omitted although
they are used in RDF forms.

In the RDF form class and property names, “kmr:” is an abbreviation for the URI base
http://kmr.nada.kth.se/rdf/form#.

kmr:Form

This is the main RDF form type. The root resource of an RDF form is an instance of this
class. This class is a subclass of rdf:Seq and has zero or more form item children.

5.2 RDF Forms 25

kmr:FormItem

This is the base class of all form items. The three form item types are specializations of this
class.

kmr:TextFormItem

This form item is a specialization of kmr:FormItem that represents a free-text input field.

kmr:ChoiceFormItem

This form item is a specialization of kmr:FormItem that represents a choice combo box with
a number of alternative choices.

kmr:GroupFormItem

This form item is a specialization of kmr:FormItem that represents a group of other form
items. It is a subclass of rdf:Seq and can have zero or more form item children.

kmr:Query

This is a superclass of all types of queries that can be referenced by a form. An example
subclass is edu:QEL3Query.

kmr:Variable

This is a superclass of all types of variables that can be referenced by a form item. An example
subclass is edu:Variable.

kmr:Style

This is a class whose members represents style and layout information about how to display
a form. This class is only included for future use, when RDF form style information is
implemented.

5.2.4 RDF Form Properties

The RDF form properties that are described here are the properties that are specific to RDF
forms. General RDF properties such as rdf:type etc. are omitted although they are used in
RDF forms.

As before, “kmr:” is an abbreviation for http://kmr.nada.kth.se/rdf/form#.

kmr:query

This is a property whose value is the RDF template query that the form is intended to collect
user input data about.

26 5 DESIGN

kmr:variable

This is a property whose value is a variable, belonging to an RDF template query, that a
form item is intended to collect user input data about.

kmr:minMultiplicity

This is a property whose value determines the minimum number of copies of a form item that
should be displayed. If there is no minimum multiplicity property this defaults to 1. This
property is only included for future use, when editing is added.

kmr:maxMultiplicity

This is a property whose value determines the upward bound on the number of copies of a
form item that are allowed to be displayed. If there is no maximum multiplicity property,
there is no upward bound. This property is only included for future use, when editing is
added.

kmr:choices

This is a property whose value represents a number of choices that are available for a
kmr:ChoiceFormItem.

kmr:style

This is a property whose value gives style and layout information about how to display the
form. This property is only included for future use when RDF form style information is
implemented.

5.2.5 RDF Form Example

In Figure 12 an example RDF form for finding employees is shown. All titles have multiple
language translations. When giving different translations of a string in RDF, it’s common
to use a resource of the type rdf:Alt, which is similar to rdf:Seq—see Figure 7, but which
specifies alternatives instead of a sequence. The language of the translation alternatives is
given as part of the translated string, in this example en: for English, and sv: for Swedish.

The form resource has only one child, a group form item, which in turn has two form item
children, a text form item and a choice form item. The text form item represents a free-text
input field to fill in the name of the employee and the choice form item represents a choice of
specifying a limited number of employee roles, Writer and Artist.

There can be many reasons for wanting to provide the user with a choice between alter-
natives instead of a free-text input field. Perhaps the designer of the form (and associated
query) knows that there only exists two employee roles, or that it’s only these two roles that
are interesting in this context.

Figure 13 shows a possible rendering of the RDF form example from Figure 12 into a form
user interface. Here the English title translations have been used. The choice box rendered
from the choice form item is shown in the “drop-down” state for clarity.

5.2 RDF Forms 27

rdf:type dc:title

rdf:type

en: Employee Search

sv: Personalsökning

rdf:type dc:title

rdf:type

rdf:Alt

rdf:Alt

kmr:variable

kmr:variable

rdf:type dc:title

kmr:variable

rdf:type

kmr:query

query_resourceform_resource

kmr:choices

kmr:TextFormItem

rdf:type

en: Role

sv: Roll

rdf:Alt

rdf:type

rdf:Alt

Artist

Writer

sv: Namn

en: Name

rdf:_1

rdf:_1

rdf:_2

rdf:_1

rdf:_2

rdf:_1

rdf:_2

rdf:_1

rdf:_2

rdf:_1

rdf:_2

kmr:ChoiceFormItem

variable_resource_x

variable_resource_y

variable_resource_z

kmr:GroupFormItem

kmr:Form

Figure 12: An example of an RDF form.

Employee Search

Name:

Role:

Artist

Writer

Figure 13: An example of a form user interface rendered from an RDF form.

28 5 DESIGN

5.2.6 RDF Schema For Forms

rdfs:Literal

kmr:query

kmr:style

kmr:variable

kmr:choices

kmr:minMultiplicity

kmr:maxMultiplicity

kmr:Form

rdf:Seqrdf:Class rdfs:Resource rdf:Property

rdfs:range

rdfs:range

rdfs:range

kmr:FormItem

kmr:GroupFormItem

kmr:TextFormItem

kmr:ChoiceFormItem

kmr:Query

kmr:Style

kmr:Variable

rdf:type

rdfs:domain

rdfs:domain

rdfs:range

rdf:type

rdfs:domain

rdfs:rangerdfs:subClassOf

rdfs:subClassOf

Figure 14: RDF schema for forms.

As mentioned in Section 3.3.5, RDFS provides a way to formally describe RDF vocab-
ularies using RDF itself. Figure 14 shows the RDF schema used to define the vocabulary
for forms. There are several RDF classes and properties available for describing an RDF
vocabulary.

• rdfs:Resource is the set of all RDF resources. All things described by RDF is a
member of this class.

• rdfs:Class is the set of all RDF classes. All RDF classes are instances of this class.

• rdf:Property is the set of all RDF resources that are properties.

• rdfs:Literal is the set of all literal values, such as strings.

• rdf:type is a property that says that a resource is a member of a class.

• rdfs:domain is a property that specifies a class whose members an RDF property can
be applied to.

• rdfs:range is a property that specifies a class whose members an RDF property can
have as values.

5.2 RDF Forms 29

The last two properties are used to describe properties. rdfs:domain specifies what kind
of resources a property can be applied to, and rdfs:range specifies what kind of values a
property can have. As an example we see in Figure 14 that instances of the kmr:FormItem
class can have the property kmr:variable and that the value of that property is of the type
kmr:Variable.

The kmr:Query and kmr:Variable classes are collective superclasses of all concrete query
and variable classes, respectively. As an example, edu:QEL3Query is an rdfs:subClassOf
kmr:Query and edu:Variable is an rdfs:subClassOf kmr:Variable.

There is one thing about the RDF form vocabulary that can’t be expressed with RDFS.
There is no way to specify typed containers. Hence, the fact that the classes kmr:Form and
kmr:GroupFormItem are sequences whose items are instances of the class kmr:FormItem is
not something that can be formally stated in RDFS, but has to be added as a comment.

30 5 DESIGN

5.3 Workflows

5.3.1 Overview

Workflows are a generalization of the query process to make it more extendable. As already
stated in Section 4.2, the implementation of a full fledged RDF workflow macro language is
outside the scope of this thesis. The concept of workflow has nevertheless been important to
the development of the query management system for two reasons, both of which are related
to extensibility.

The first is that an RDF workflow macro language is a powerful concept that will be
implemented at some point, and it’s desirable to create the query management system so
that it can easily be extended to incorporate RDF workflows.

The second is that the idea of workflows gives a good suggestion about suitable mod-
ularization of the query management system. As discussed in Section 4.2, separating the
implementation of the parts responsible for the different steps of the query process and mak-
ing them independent, makes the system generally more extensible. This will in particular
affect future integration of editing, since many of the query processing steps are shared with
the editing process.

5.3.2 Workflow Components

The workflow components are objects sent between the workflow activities as input or output
data. They are all implemented as interfaces in the Java class library of the query management
system. The names of the workflow components given here are those of their Java interface
counterpart.

VariableBindingSet

The VariableBindingSet represents the result of a query. It consists of variable bindings,
each of which represents a variable and a value bound to it. Although the concrete represen-
tation of the variable bindings of a VariableBindingSet is unspecified, the variable bindings
can be logically grouped into result tuples. A result tuple represents a possible solution to a
query and consists of the complete set of variables with a single value bound to each of them.
The variable bindings of a VariableBindingSet can represent more than one result tuple
because a query can have more than one solution.

A VariableBindingSet is not only used to store the result of a query, but is a general
result storage structure for values bound to variables.

FormModel

The FormModel is an abstract representation of the information needed to create a form user
interface.

QueryModel

The QueryModel is an abstract representation of a query.

5.3 Workflows 31

5.3.3 Workflow Actions

The workflow actions are the fundamental building blocks of the workflow that are depicted in
Figure 10 and Figure 11. Each take one or more workflow components as input and produces
one workflow component as output.

They are all implemented as methods of the WorkFlowManager interface in the query
management Java class library. The names of the workflow actions given here are those of
their interface method counterparts.

substituteVariables

Input VariableBindingSet
QueryModel

Output QueryModel

The substituteVariables workflow action transforms a template query, represented by
a QueryModel, into an executable query, represented by another QueryModel. The input
VariableBindingSet is assumed to contain a unique variable binding for each of the param-
eter variables of the template QueryModel that is to be substituted.

executeQuery

Input QueryModel
Output VariableBindingSet

The executeQuery workflow action executes a query represented by a QueryModel and returns
the result as a VariableBindingSet. The query is normally executed by sending it over a
network, such as the Edutella peer-to-peer network, to a query engine that returns the results.
The results don’t have to be returned at the same time. The query engine might very well
return result tuples as it finds them. This means that the VariableBindingSet is continually
updated as new results are reported.

input

Input FormModel
Output VariableBindingSet

The input workflow action takes a FormModel and creates a form user interface. The returned
VariableBindingSet is used to store the user input data, but it doesn’t contain valid data
until the user is done, at which point a message workflow action notifies the workflow manager.

message

Input VariableBindingSet
Output -

This is the only workflow action that isn’t represented in Figure 10 or Figure 11. The message

32 5 DESIGN

workflow action is used to notify the workflow manager that the specified VariableBindingSet
now has valid data (see the input workflow action).

5.4 Program Structure

5.4.1 Overview

The purpose of this section is to give a sense of the overall structure of the most important
classes and interfaces that comprise the query management system. The emphasis is on the
relations between the classes and the interfaces rather than on details regarding individual
classes or interfaces.

The program structure description is divided into three parts based on the purpose and
responsibilities of the concerned classes and interfaces—the workflow-, query-, and form-
specific parts. This distinction is not absolute. Where there have been overlaps, the involved
classes and interfaces have been included in all relevant parts.

The program structure has been modeled using the Unified Modeling Language (UML)
[24]. Intersecting lines can be shown in different ways when drawing paths in UML diagrams.
In the UML diagrams used here all line crossing indicates connection between the lines.

5.4.2 The Workflow-Specific Classes And Interfaces

VariableMappingIterator
<<interface>>

VariableMappingSet
<<interface>>

WorkFlowManager
<<interface>>

VariableMapping
<<interface>>

VariableMappingIteratorImpl

VariableMappingSetImpl

WorkFlowManagerImpl

VariableMappingImpl
<<interface>>

Variable*
2*

Figure 15: UML diagram for workflow-related classes and interfaces.

All classes and interfaces of the query management system is at least indirectly involved
with the workflow of executing a query. Figure 15 shows the classes that are more directly
or exclusively involved with the workflow process. Here the classes and interfaces involved in
the editing specific mapping workflow action (see Figure 11) have been included as well.

RDF encoded workflows that are being interpreted into a macro language are outside the
scope of this work. The only workflow that is implemented is the workflow of a query process,
which is hardcoded into the QueryWorkFlowManagerImpl class.

5.4 Program Structure 33

5.4.3 The Query-Specific Classes And Interfaces

<<interface>>
QueryModel

<<interface>>
Variable

<<interface>>
Value

WorkFlowManager
<<interface>>

VariableBindingSet
<<interface>>

VariableBindingIterator
<<interface>>

FormModelImpl

VariableBindingIteratorImpl

VariableImpl

ValueImpl

VairableBindingSetImpl

QueryModelImpl

<<interface>>
FormModel

WorkFlowManagerImpl

VariableIterator
<<interface>>

VariableBinding
<<interface>>

VariableIteratorImpl

VariableBindingImpl

QueryWorkFlowManagerImpl

*

*

*

Figure 16: UML diagram for query-related classes and interfaces.

Figure 16 shows the relationships between the classes and the interfaces that are more
directly involved with the manipulation and execution of queries. A more detailed description
of some of the most important interfaces can be found in Section 5.3.

5.4.4 The Form-Specific Classes And Interfaces

Figure 17 shows the relationships between the classes and the interfaces that are involved
with the generation of form user interfaces. A more detailed description of some of the most
important interfaces can be found in Section 5.3.

34 5 DESIGN

<<interface>>
LiteralChoice

<<interface>>
Choice

TextFormItem
<<interface>>

<<interface>>
FormItem

LangStringMap
<<interface>>

<<interface>>
Variable

VariableBinding
<<interface>>

ResourceChoice
<<interface>>

ChoiceFormItem
<<interface>>

GroupFormItem
<<interface>>

FormItemIterator
<<interface>>

WorkFlowManager
<<interface>>

<<interface>>
FormModel

<<interface>>

FormModelListener
<<interface>>

<<interface>>
Form

VariableBindingSet
<<interface>>

GroupFormItemImpl

ChoiceFormItemImpl

TextFormItemImpl

FormItemImpl

FormItemIteratorImpl

LiteralChoiceImpl

FormModelImpl

FormImpl

LangStringMapImpl

VariableBindingSetListener

ResourceChoiceImpl

*

*
*

*

*

Figure 17: UML diagram for form-related classes and interfaces.

35

6 Implementation

6.1 Development Environment

6.1.1 Open Source

The source code of the implementation of this thesis work is released under the GNU General
Public License, as published by the Free Software Foundation [9]. This guarantees that the
source code will remain open and accessible to others.

6.1.2 Java

The implementation of this thesis work has been done using the Java language. There are
several reasons for this.

• There are free compilers for Java.

• The Java Virtual Machine, on which Java programs run, exists for most architectures
and operating systems, which makes Java programs very portable.

• The Java API is feature rich and easy to use, which means that an integrated develop-
ment environment isn’t necessary.

• The Java language is purely object oriented, promoting good program structure.

• Java has a built-in garbage collector, which leads to easy memory management.

• Java hides pointers and thereby avoids common programming errors.

• The Edutella API and the Jena API are written in Java.

6.1.3 Ant

Compilation and re-compilation of multiple source files quickly becomes tedious when done
manually. In this work, Apache Ant has been used as a compilation manager. Apache Ant is
an open source Java-based build tool, similar to the Unix make utility [2].

The advantage of Ant over make is that Ant uses standard XML files for specification of
file dependencies instead of the error prone Makefile of make, and that Ant can be used on
almost all platforms due to it being written in Java.

6.2 External API:s

6.2.1 Edutella

The Edutella API is an open source Java class library containing code to help setting up
Edutella provider and consumer peers [7]. In addition it contain classes for manipulating
Edutella RDF queries.

The Edutella API was used in this work for setting up a simple Edutella consumer peer
and for creating Edutella queries to send via the consumer peer over the Edutella network.

36 6 IMPLEMENTATION

6.2.2 Jena

Jena is a general purpose open source Java API for manipulating RDF data that is being
developed by the Hewlett-Packard Company [17].

Jena has been used in this work for low level manipulation of RDF data models, such as
e.g. getting and setting properties of RDF resources.

6.3 The Query Management API

6.3.1 Overview

The query management API is divided between four Java packages; form, query, workflow,
and internationalization. These packages contain no classes, only interfaces. Instead
the class implementations are contained in an impl subpackage of each of the four packages,
respectively.

6.3.2 Java Packages

The naming of the Java packages follows the convention of constructing the root of the package
name by reversing the URL of the company or organization responsible for the development
of the package.

Hence, the prefix of all packages is se.kth.nada.kmr.shame, where the acronym, SHAME,
is the name of an ongoing project at KMR to develop a Standardized Hyper Adaptable
Metadata Editor, in which this work is intended to be incorporated.

se.kth.nada.kmr.shame.form

This is the package responsible for forms. It includes Java interfaces detailing the behavior
of both abstract representations of forms and actual form user interfaces.

se.kth.nada.kmr.shame.form.impl.vocabulary

This package is responsible for a Jena implementation of the form RDF vocabulary definition.

se.kth.nada.kmr.shame.internationalization

This package contains Java interfaces describing multi-lingual strings, i.e. strings for which
multiple translations exists.

se.kth.nada.kmr.shame.query

This package is responsible for the abstract representation and behavior of queries and variable
binding sets.

se.kth.nada.kmr.shame.workflow

This package defines the behavior of workflows. It also includes interfaces for variable map-
pings, which will be needed when the query system is extended to include editing.

37

7 Query Management For The Conzilla Browser

7.1 Conzilla

Conzilla is a concept browser developed by the Knowledge Management Research (KMR)
group at the Centre for User Oriented IT Design (CID) at the Royal Institute of Technology
(KTH), Stockholm [3] [4] [5]. It supports navigation in an atlas of context maps, which are
sets of concepts and conceptual relations that are presented together in order to give the user
a sense of the context in which a piece of information is viewed.

A part of this thesis work has been to incorporate a query management system into the
Conzilla browser and provide the capability of executing queries on an Edutella peer-to-peer
network.

7.2 Example Query Execution

7.2.1 The Edutella Provider

In order to demonstrate the query management of Conzilla, an Edutella network was set up
with a provider peer configured with the RDF knowledge base depicted in Figure 18. As
before, “ex:” is an abbreviation for the example base URI http://example.net/rdf/.

rdf:type

rdf:type

rdf:type

dc:title

dc:title

dc:title

rdf:type

dc:title

ex:Fruit

ex:Color

Apple

http://example.net/fruits/orange

http://example.net/fruits/apple

http://example.net/colors/red

http://example.net/colors/orange

Orange

Orange

Red

Figure 18: RDF knowledge base for the Edutella provider.

7.2.2 An Example Query

Conzilla provides the possibility to draw and display RDF graphs. Figure 19 shows an
Edutella RDF template query with an accompanying RDF form. All type information is
hidden and resources are shown as ellipses with their titles as labels.

The complete RDF graphs for the query and the form are displayed in Figures 20 and 21,
respectively.

The query states, find all resources that have a type and a title. When an Edutella query
has two query literals, as is the case here, it is interpreted as a conjunction—both query
literals have to be satisfied for the query to be satisfied.

38 7 QUERY MANAGEMENT FOR THE CONZILLA BROWSER

The accompanying form is designed to let the user specify the type and/or the title of the
resource to search for. For demonstration purposes two different input methods were chosen,
free-text input for the title and choice alternatives for the type.

Figure 19: An Edutella query with an accompanying RDF form in Conzilla.

edu:RDFReifiedStatement

query_resource

edu:QEL3Query

edu:Variable

dc:title

rdf:type rdf:type

edu:hasQueryLiteral

edu:hasQueryLiteral

statement_resource_1

rdf:type

title_variable_resource

resource_variable_resource

type_variable_resource

statement_resource_2

rdf:type

rdf:predicate

rdf:predicate

rdf:object

rdf:object

rdf:subject

rdf:subject

rdf:type

Figure 20: An example Edutella query.

7.2.3 Query Execution

The query interface is started from a pop-up that appears when right clicking on the query
resource. If a valid RDF form is linked to the query resource, a form is generated and launched
in a separate window, as shown in Figure 22.

As a future extension, one could couple hidden forms and template queries to concepts
in a Conzilla context map, in order to provide a default search interface for finding content
about that concept.

The query is now ready to be executed by pressing the OK button. If no information is
entered, the query is executed unaltered, leading to the result form shown in Figure 23.

7.2 Example Query Execution 39

rdf:type dc:title

rdf:type dc:title

kmr:variable

kmr:variable

rdf:type dc:title

kmr:variable

rdf:type
kmr:query

query_resourceform_resource

kmr:choices

kmr:TextFormItem

rdf:type

rdf:Alt

rdf:_1

rdf:_1

rdf:_2

rdf:_1

rdf:_2

kmr:ChoiceFormItem

kmr:GroupFormItem

kmr:Form

text_variable_resource

type_variable_resource

Title

Type

Resource

resource_variable_resource

ex:Color

ex:Fruit

Figure 21: An example RDF form.

Figure 22: Query form rendered from an RDF form in Conzilla.

40 7 QUERY MANAGEMENT FOR THE CONZILLA BROWSER

Figure 23: Result form generated after executing the unaltered query.

Since all four resources in the Edutella provider’s RDF knowledge base have type and title
information, all of them are returned as the result of the query. For each of the four results,
the values bound to the three variables of the query are displayed.

If we now refine our search by entering “Orange” as the title in the query form, we get
the result shown in Figure 24.

Figure 24: Result form for the title “Orange”.

Here, the literal “Orange” has been substituted for the title variable in the query before
execution. The values bound to the remaining two variables are shown as the result.

There are two resources that have the title “Orange”, one of which has the type ex:Color
and the other has the type ex:Fruit. If we’re only interested in the color orange, we can
choose the ex:Color as the type in the query form in addition to entering the title “Orange”.
The result after query execution is shown in Figure 25.

Figure 25: Result form for the title “Orange” and the type ex:Color.

41

8 Future Perspectives

8.1 Extensions

8.1.1 Form Layout And Style

Nothing has been mentioned so far about the style of forms. As coded in RDF in this
work, forms are hierarchical tree-like structures similar to HTML structures. At present the
translation of the RDF forms into Java user interfaces is hardcoded.

In analogy with separating out style information of HTML into style sheets (CSS), it
would be possible to create separate style information about RDF forms. The benefits of this
would be the same as with CSS—flexibility, clarity, and if the style information itself was
coded in RDF it would be possible to share, reuse, and recombine style information between
forms.

CSS makes use of selectors to specify which style information that should apply to each
part of a document [1]. This is a very powerful way to specify style information. By giving
general style information a general selector, such as e.g. the <body> tag (the actual CSS
selector for that would simply be “body:”), all children can inherit this information. More
specialized children can have style information with a more specific selector, which overrides
the general one. In this way a minimum of style information is needed. This is not only good
news for lazy style writers but also means that style information can be easily changed and
reused.

With the CSS selectors as inspiration, a possible selector system for RDF would be to use
class hierarchies, class instances, and individual resources as selectors. The following is an
example of each type, respectively:

• All subclasses of rdf:Seq should be displayed with a red outline.

• All resources that are instances of rdf:Seq should be displayed with a bold font.

• The resource http://example.net/myresource should be displayed underlined.

This is not only applicable to RDF forms, but could be applied when visualizing any type
of RDF data. When multiple style statements conflict there is a natural hierarchy among these
selectors when deciding which style information should take precedence: Class hierarchies are
more general than class instances, which in turn are more general than individual resources.
In analogy with CSS, the convention would be to let the more specific selectors override the
more general ones.

8.1.2 RDF Workflows

The analysis of query and editing processes in this work leads up to the concept of workflows.
The workflow concept has had an impact on the design of the query management system.
Modularity based on the query and edit processing steps ensured flexibility and a possibility
to extend the system with a minimum of duplicated effort. But due to time shortage and
it being slightly out of scope, the logical extrapolation of the workflow concept was never
drawn.

By coding workflows themselves in RDF, the different types of processes would disappear.
There would only be workflows, and creating new processes would simply mean to draw a
new RDF workflow graph. This would amount to a powerful RDF scripting language.

42 8 FUTURE PERSPECTIVES

What’s needed before it would be meaningful to code workflows in RDF is an RDF
workflow interpretation engine. Something must translate the RDF workflows into processes
and execute them.

8.1.3 Editing

Regardless of whether RDF workflows are implemented or not, it would be very useful to
extend the query management system with editing capabilities.

The groundwork for this has already been done. The code for mapping the result of a query
to variables of a new query has already been written and is part of the query management
class library. This is the necessary “glue” between finding a resource to edit and creating a
new query designed to find all editable metadata about it.

The RDF form specification needs to be extended in order to handle the additional com-
plications of editing, such as e.g. restrictions on the type of editing that’s permitted on a
given resource.

As mentioned before, this work is intended to be a part of the Standardized Hyper Adapt-
able Metadata Editor (SHAME) project, which aims to create a metadata editing and pre-
sentation framework for RDF metadata. An early prototype editor has already been created
in this project [23].

8.2 Limitations Of The Edutella Query Language

The query management system doesn’t require the Edutella system, but it’s rather Edutella
biased. Although it would be possible to implement the capability to send queries to other
metadata systems without changing any of the existing interfaces, queries sent to the Edutella
network will likely be the most important ones for any foreseeable future. Edutella is an
international open source effort with a very powerful concept.

That being said, Edutella isn’t perfect and, being under development, doesn’t claim to
be. The most serious problem occurs when trying to express queries of the type, “give me
the resource R that satisfies some condition C, and if available give me the metadata M about
it”. The problem is to express, with Edutella’s Prolog like query language, that we want the
resource R even if the metadata M isn’t found. Normally when we want a resource with some
metadata, we express it as “give me the resource R that has metadata M”. To express the first
query we have to use an “or” expression, “give me the resource R or give me the resource R
that has metadata M”.

This becomes extremely inefficient when we want a lot of metadata. The number of
disjunctive “or” clauses grows exponentially with the number of metadata properties we
want about a resource.

It’s not possible to express the query efficiently in Prolog. What’s needed is the “outer
join” expression of database languages like SQL. A reasonable solution would be to extend
the Edutella query language with something equivalent.

8.3 Edutella Queries And RDFS

In Section 5.2.6 it was noted that the class membership of sequence items could not be
specified due to the lack of typed containers in RDFS. Although extending RDFS is slightly
off topic when discussing query management, there is one interesting aspect of the RDFS
limitations.

8.4 Non-Authoritarian Metadata View 43

The purpose of specifying a vocabulary with RDFS is to define valid RDF constructs.
In order to check whether a specific instance of e.g. an RDF form satisfies the vocabulary
specification of RDF forms, one has to compare the instance with the specification somehow.
If this is to be automated, one solution would be to design a query that matches RDF forms.
One could then execute the query on the RDF database containing the RDF form instance
and see if a form with the specified root resource was found.

The query designed to find RDF forms would then be a kind of vocabulary specification
of RDF forms. Edutella queries could be used instead of, or as a complement to, RDFS. In
addition to higher expressiveness, Edutella queries provide the possibility of automating the
verification of RDF vocabularies.

8.4 Non-Authoritarian Metadata View

8.4.1 External Annotation

By its very nature, RDF metadata provides the ability to express information about other
resources. This obviously results in the possibility of annotating read-only information. Ev-
eryone is free to say anything about anything.

This has important implications for the freedom of expression on the RDF-based Semantic
Web. When carrying out a search, the combined RDF metadata of the whole accessible web
will be the database where the information is collected from.

8.4.2 Metadata Authentication

While freedom of expression is very desirable, there must be some way of weighing information
when e.g. different RDF sources contradict each other. The only one capable of this is the
reader of the information, but in order to form an opinion it is necessary to know from where
the information came.

What’s needed is some form of system for authenticating the origin of metadata so the
receiver can estimate its credibility. This would have to include some form of digital signature
that is reasonably difficult to forge.

Although an authentication system like this lies outside the scope of a query management
system, it would have implications for the management of queries. There would have to be a
way of specifying sources you trust and distrust, and perhaps a way of weighing results from
different sources.

44 REFERENCES

9 References

References

[1] Cascading Style Sheets, http://www.w3.org/Style/CSS/

[2] The Apache Ant project, http://ant.apache.org/

[3] The concept browser Conzilla, http://www.conzilla.org/

[4] Nilsson, M., Palmér, M. 1999, Conzilla - Towards a concept browser , CID-53, TRITA-
NA-D9911, Department of Numerical Analysis and Computer Science, KTH, Stockholm.,
http://kmr.nada.kth.se/papers/ConceptualBrowsing/cid 53.pdf

[5] Naeve, A. 2001, The Concept Browser - a new form of Knowledge Management Tool,
Proceedings of the 2nd European Web-based Learning Environments Conference (WBLE
2001), Lund, Sweden.,
http://kmr.nada.kth.se/papers/ConceptualBrowsing/ConceptBrowser.pdf

[6] The Dublin Core Metadata Initiative, http://www.dublincore.org/

[7] The Edutella project, http://edutella.jxta.org/

[8] Nejdl et al. 2002, EDUTELLA: A P2P Networking Infrastructure Based On RDF,
WWW2002, May 7-11, 2002, Honolulu, Hawaii, USA.,
http://edutella.jxta.org/reports/edutella-whitepaper.pdf

[9] The GNU General Public License, http://www.fsf.org/licenses/

[10] Some early ideas for HTML, http://www.w3.org/MarkUp/historical

[11] HTML, http://www.w3.org/MarkUp/

[12] HTML, first version,
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/MarkUp.html

[13] HTML, version 2, http://www.rfc-editor.org/rfc/rfc1866.txt

[14] HTML, version 3, http://www.w3.org/TR/REC-html32

[15] HTML, version 4, http://www.w3.org/TR/html401/

[16] The Java language, http://java.sun.com/

[17] The Jena Semantic Web Toolkit, http://www.hpl.hp.com/semweb/jena.htm

[18] Platform for Internet Content Selection (PICS), http://www.w3.org/PICS/

[19] Resource Description Framework (RDF), http://www.w3.org/RDF/

[20] Resource Description Framework (RDF) Model and Syntax, WD-rdf-syntax-971002,
http://www.w3.org/TR/WD-rdf-syntax-971002

REFERENCES 45

[21] RDF Vocabulary Description Language 1.0: RDF Schema,
http://www.w3.org/TR/rdf-schema/

[22] The Semantic Web, http://www.w3.org/2001/sw/

[23] Standardized Hyper Adaptable Metadata Editor (SHAME),
http://sourceforge.net/projects/shame/

[24] Unified Modeling Language (UML), http://www.omg.org/UML/

[25] Naming and Addressing: URIs, URLs, ..., http://www.w3.org/Addressing/

[26] Uniform Resource Identifiers (URI): Generic Syntax, Request for Comments: 2396,
http://www.ietf.org/rfc/rfc2396.txt

[27] Extensible Markup Language (XML), http://www.w3.org/XML/

46 10 ACKNOWLEDGEMENT

10 Acknowledgement

I would like to thank Matthias, Ambjörn, and Mikael for all the help, discussions, interesting
ideas, and general encouragement.

I would also like to thank everyone (including the wonderful coffee machine) at Uppsala
Learning Lab for providing such a nice working environment.

Last but not least, I would of course like to thank my lovely girlfriend Anja for being my
lovely girlfriend Anja.

