A System for Exploring Open Issues in VR-based Education

Gustav Taxén and Ambjörn Naeve
(gustavt@nada.kth.se / amb@nada.kth.se)
Center for User Oriented IT Design
at the
Royal Institute of Technology
Stockholm, Sweden

http://cid.nada.kth.se/
http://www.nada.kth.se/~gustavt/cybermath/
Personal views on "E-learning"

- Knowledge requirements change rapidly, so learning must be fast (at least in many professions)

- E-learning solution: Minimize teacher-student communication through
 - "Knowledge packaging": CD-ROMs, websites, modules, games ("edutainment")
 - Limiting the bandwith: automated replies, question databases
But...

• Constructivist learning theory:
 • We construct our own understanding of the things we study.
 • Knowledge construction is a collaborative process.
 • So efficient learning requires communication between teachers and students.
We should use computer and web technology to bring people together in more efficient ways!

http://cid.nada.kth.se/
http://www.nada.kth.se/~gustavt/cybermath/
Question-driven learning: Teacher roles

• Preacher
 Explains and excites

• Coach
 Generate questions & guide

• Plumber
 Maintaining communication channels

• Student ↔ teacher
Cybermath project background:

- Advanced visualization techniques
- Mathematics
- Shared virtual environments
- Schools and museums

http://cid.nada.kth.se/
http://www.nada.kth.se/~gustavt/cybermath/
VR in education has been proved successful

Some open issues:

- Immersive vs. fishbowl VR
- Collaboration techniques (mainly teacher-student)
- Pros and cons of visual richness (realism)
- Mathematical content
Cybermath

• Shared virtual environment for mathematics exploration
• Virtual museum metaphor
• Four exhibitions on geometry and calculus
• Support range of teaching styles: lecturing, teacher-guided projects, workshops, individual exploration & play

http://cid.nada.kth.se/
http://www.nada.kth.se/~gustavt/cybermath/
The DIVE platform
http://www.sics.se/dive/

- Distributed scenegraph with avatars
- Live audio transfer between participants
- Alternative display devices: monitor, HMD, CAVE
- Rapid prototyping through Tcl/Tk
- Runs on low-range hardware

http://cid.nada.kth.se/
http://www.nada.kth.se/~gustavt/cybermath/
DEMO

Installed in the CAL.

Cybermath files available on request.

http://cid.nada.kth.se/
http://www.nada.kth.se/~gustavt/cybermath/
Evaluation study

- 14 participants:
 - Students (undergraduates) at the University of Uppsala
 - Teacher in Stockholm
- Guided tour through the cylinders exhibition
- Questionnaire

http://cid.nada.kth.se/
http://www.nada.kth.se/~gustavt/cybermath/
Study results

- Favorable ratings for
 - Perceived level of immersion
 - Awareness of other participants in the VE
- Average ratings for
 - User interface
 - Collaboration aspects

http://cid.nada.kth.se/
http://www.nada.kth.se/~gustavt/cybermath/
Drawbacks of the DIVE platform

- Unstable
- Poorly documented
- Dated graphics engine
- Questionable distribution model
- Hard to write non-trivial applications in Tcl/Tk
Our requirements for large-scale deployment

- Robust
- Easy to use and set up
- Flexible for application programmers
- Support rapid prototyping (eventually by teachers & students)
- High visual quality

http://cid.nada.kth.se/
http://www.nada.kth.se/~gustavt/cybermath/
Wasa: A set of portable programming libraries

• Dynamic scenery: OpenInventor-style scenegraph
• Static scenery: Quake II-style
• Independent of distribution model
• Tools
 • Lighting (radiosity, sunlight/skylight simulation)
 • Import objects from ActiveWorlds, Mathematica, Maya

http://cid.nada.kth.se/
http://www.nada.kth.se/~gustavt/cybermath/
DEMO

Download from
http://www.nada.kth.se/~gustavt/cybermath

http://cid.nada.kth.se/
http://www.nada.kth.se/~gustavt/cybermath/
Why Yet Another "Game Engine"?

- Control over source code & documentation
- GNU license
- Light-weight & well-documented
- Easy to integrate new rendering algorithms & distribution models
- Extend with new node types without recompile (or at run-time)

http://cid.nada.kth.se/
http://www.nada.kth.se/~gustavt/cybermath/
Planned activities

- Study: Evaluate Cybermath in schools, is it useful?
- Study: How important is visual richness?
- Study: What’s the difference in retained knowledge (if any) for fishbowl VR, HMD and CAVE?

http://cid.nada.kth.se/
http://www.nada.kth.se/~gustavt/cybermath/
Acknowledgements

• Ambjörn Naeve
 Mathematics, education/teaching strategies

• Sören Lenman
 Project leader

• Pär Bäckström
 Virtual architecture, 3D design

• Olle Sundblad
 Networking

http://cid.nada.kth.se/
http://www.nada.kth.se/~gustavt/cybermath/
Thank you for your attention!

(And please let us know what you think of the demo!)