
TRITA-NA-D9911 • CID-53, KTH, Stockholm, Sweden 1999

Conzilla - Towards a Concept Browser
Mikael Nilsson and Matthias Palmér

Reports can be ordered from:
CID, Centre for User Oriented IT Design
Nada, Dept. Computing Science
KTH, Royal Institute of Technology
S-100 44 Stockhom, Sweden
telephone: + 46 8 790 91 00
fax: + 46 8 790 90 99
e-mail: cid@nada.kth.se
URL: http://www.nada.kth.se/cid/

Mikael Nilsson and Matthias Palmér
Conzilla - Towards a Concept Browser
Report number: TRITA-NA-D9911, CID-53
ISSN number: ISSN 1403-073X
Publication date: August 1999
E-mail of authors: mini@nada.kth.se
 matthias@nada.kth.se

Conzilla – Towards a concept
browser

Mikael Nilsson
Matthias P

January 28, 2000

Abstract

We have designed the basics of an architecture for working with distributed
mind-maps containing connected concepts. This involves

designing a static representation of concepts and mind-maps for storing and
transmitting

designing an application programming interface (API) for working with con-
cepts and mind-maps

designing a way to browse an interconnected network of such mind-maps.

The concepts and mind-maps are represented statically in Extensible Markup
Language (XML), in a modular way. A general class library written in Java for
manipulating concepts and maps has been developed, as well as a browser named
“Conzilla” using the library.

Our work is meant to be used as part of of a distributed interactive learning
environment that is being developed at Center for user-oriented IT-Design (CID),
at the Royal Institute of Technology (KTH) in Stockholm, Sweden. It has been
supervised by Tekn. Dr. Naeve, who is a senior researcher at CID.

2

Contents

1 Introduction 7
1.1 Background . 8
1.2 The Problem . 9
1.3 How to read this paper . 10

2 The Meaning of Browsing 11
2.1 A simple example . 11
2.2 The role of UML . 12
2.3 Concepts . 12

2.3.1 Aspects . 14
2.3.2 Associations . 14

2.4 Concept-maps . 15
2.5 Demands on a browser . 16

3 Elements of a solution 19
3.1 Overall structure . 19
3.2 The concept of a component . 19

3.2.1 Concept . 20
3.2.2 ContentDescription . 20
3.2.3 ConceptMap . 20
3.2.4 MapSet . 21
3.2.5 AspectSet . 21

3.3 Unique identification . 21
3.4 Implementation . 22

3.4.1 The role of the Web browser 23
3.4.2 The role of XML . 23
3.4.3 The Role Of Java . 24

3.5 A comparison with MOF . 25
3.5.1 Problems with MOF . 25

3

4 CONTENTS

3.5.2 MOF and XMI . 27
3.5.3 Conclusion . 28

3.6 Future considerations . 28
3.6.1 The location of associations 28
3.6.2 The structure of associations 29
3.6.3 The essence of associations 31

4 Representing Components in XML 33
4.1 A short introduction to XML . 33
4.2 The component representation 33

4.2.1 The <MetaData> tag 33
4.2.2 An example concept . 34
4.2.3 An example concept-map 36
4.2.4 An example map-set . 37
4.2.5 An example aspect-set 38
4.2.6 An example contentdescription 38

5 The class library 39
5.1 Design goals . 39
5.2 CORBA::RelationsShips 40
5.3 XML and Java . 41
5.4 Packages . 41

5.4.1 The concept-related packages 41
5.4.2 The concept-map-related packages 42
5.4.3 Miscellaneous packages 42

5.5 The future of the class library . 43

6 Conzilla 45
6.1 Background . 45
6.2 The Graphical User Interface . 45

6.2.1 Introducing the ConceptMapBrowser 46
6.2.2 Introducing the AspectDisplayer 46
6.2.3 Introducing the ContentDisplayer 46
6.2.4 The responsibility of the Browser 46

6.3 The browser superstructure . 48
6.4 The ConceptMapBrowser module 48

6.4.1 Browsing concept-maps 48
6.4.2 History listeners . 49
6.4.3 Accessing internal state 49

6.5 The AspectDisplayer . 50

CONTENTS 5

6.6 Remote control . 50
6.7 Platform and security considerations 51

6.7.1 Java and security . 51
6.7.2 Java and Swing . 52

6.8 Future . 52

7 Future Extensions 55
7.1 User interface design . 55
7.2 Editor . 55
7.3 Dynamic concept-maps . 56
7.4 CORBA . 56
7.5 The IMS Project . 57
7.6 Courses . 57
7.7 Searching . 58
7.8 JavaBeans . 59
7.9 Conclusion . 59

A Glossary 61
A.1 Special terms . 61
A.2 Abbreviations . 62

6 CONTENTS

Acknowledgments

We are most grateful to Naeve, who inspired us to get involved in this
risky but rewarding business. He has been a perfect tutor with his great visions but
willingness to let our creativity flow freely. He, together with Donald Broady, Hans
Melkersson, Bo Westerlund and all the others involved in the Garden of Knowledge
project have been a never-ending source of inspiration, ideas and confusion.

We also want to thank Stefan at TDB, the Department of Scientific
Computing, at Uppsala University for letting us realize our rather wooly ideas.
There is no real room for a interdisciplinary subject like ours, but he has shown
courage and great interest in our work.

Last, we want to thank Linus Torvalds for giving us Linux, the Blackdown
team for giving us Java for Linux, and the whole Linux community and the GNU
project for giving us a superior development environment.

Chapter 1

Introduction

There has been a lot of excitement in the last couple of years regarding different
forms of computerized learning. There is a general consensus among the propo-
nents of computerized learning that it has the potential to revolutionize the the way
we learn and the way we teach. There are, however, many difficult problems to be
resolved before everyone can take full advantage of the new medium. One of the
most important aspects of the digital age, the Internet, has been largely ignored in
the construction of computerized learning material. You could ask why you should
be restricted to the material you have available locally, when there is a world of
information out there.

This situation is changing rapidly, and new technologies are forming in order to
facilitate net-based learning. However, solutions that take advantage of the Internet
face major obstacles. The first problem is the diversity of platforms that are in use
out there. Being totally platform-independent means limiting the features of the
learning material.

There are other approaches. The IMS project, discussed in Section 7.5, is
developing a platform-independent framework for web-based learning material. It
does, however, allow the actual material to be as platform-dependent as necessary.

This thesis work falls in the same category as the IMS project. The goal of our
work is not a specific technical solution to the problem of how to teach and how
to learn using a computer. In contrast, our work is a way to tie together different
technical solutions in a coherent and platform-independent way, a way to organize
the knowledge rather than a way to present and use it.

This isn’t the place to explain the complete theoretical framework behind this
work. See [12] and [14] instead. In this chapter and the following we will concen-
trate on explaining only those aspect of the framework that are needed to under-
stand what has been done.

7

8 CHAPTER 1. INTRODUCTION

1.1 Background

This thesis work is part of a project called the Garden Of Knowledge, which is
an interactive learning platform that is being developed at CID at KTH under the
coordination of Naeve.

The Garden of Knowledge project is aiming to provide an open-ended and
flexible experimental platform which can be exploited in order to gain insights
into how to create computer-supported learning environments with an increased
potential for individualized learning. The project has resulted in several prototypes,
of which the initial three are documented in [11] and [12].

The Garden of Knowledge is being designed and implemented as a so called
Knowledge Manifold, which is a conceptual framework for individualized and in-
teractive learning that has been introduced by Naeve in [12]. Here conceptual re-
lationships are described in terms of concept-maps, expressed in Object Modeling
Technique (OMT), the predecessor of Unified Modeling Language (UML), which
is the main conceptual modeling language of today (see e.g. [4]).

As described in [12], a knowledge manifold is structured as a set of interlinked
knowledge patches - each maintained by a dedicated knowledge-gardener. Each
patch is equipped with its own set of concept-maps, which are constructed by the
corresponding gardener as part of his or her personal presentation of the conceptual
world. Such personal knowledge patches do not grow in isolation. On the contrary,
they are collectively calibrated in various ways, in an ongoing process that creates
an maintains the cultural consensus which we call the objective (= real) world
around us.

The contents of a group of related concepts is structured as a so called knowl-
edge component, which contains a description at multiple scales. As discussed
in [12] and [14] a well designed knowledge component is somewhat like a skiing
area, with different ways to get down, each one marked with a code that indicates
the type of challenges that it offers the skier. There is nothing that prohibits you to
choose a black pist even if you are at the green level of preparation, but you have a
pretty fair idea of what to expect from the experience.

As pointed out in [12], the level of presentational complexity of a knowledge
component should be interactively adaptable to the demands of the learner, just
as in a computer game. A knowledge component is designed to separate between
“what to teach” and “when to learn”, wheras a learning configuration (such as e.g. a
traditional course) is designed to anticipate the most effective connections between
“what to teach” and “when to learn”.

Within the context of a knowledge manifold, constructing learning configura-
tions is done by what is termed “composition of components”. This activity is
closely related to establishing a learning strategy for each learner involved, which

1.2. THE PROBLEM 9

means eliciting individual answers to three basic questions: 1: What am I inter-
ested in? 2: What is there to know about it? and 3: What do I want to know about
it?

Taken together, the collection of concept-maps define the so called atlas of the
knowledge manifold. In [13] and [14] Naeve shows how to make use of this atlas
in order to perform what he calls “conceptual navigation” and display the contents
of a combination of concepts at multiple scales of resolution and depth.

1.2 The Problem

This thesis work is concerned with the organization of a Knowledge Patch, and
with how to present the available knowledge in a Patch in a natural way. In more
general terms

we are interested in the organization of knowledge of any kind, and
the presentation of this organization.

We will use special kinds of mind-maps for this purpose, that describe how
different concepts within the subject field relate to each other. These mind-maps
could simply be a way to show the structure of a Knowledge Patch, i.e., the organi-
zation of its Knowledge Components, but more often those maps convey significant
knowledge on their own.

A mind-map thus does not in itself include any information to browse, presen-
tations to view or tutorials to engage in etc. It only involves the organization of
these things. In many learning resources in use today, including online material in
the form of HTML pages, the structure of the knowledge is embedded in the docu-
ment presenting and explaining the concepts. We want to separate the organization
of knowledge from the presentation of it.

Knowledge in the form of mind-maps is, in this model, distributed between dif-
ferent and independent Knowledge Patches. This system becomes interesting when
we allow Knowledge Patches to use knowledge from each other. Therefore, the
representation of the mind-maps must be distributable and platform-independent,
while remaining globally interconnected. The act of viewing mind-maps has now
transformed into something different which we call browsing mind-maps, and which
is called conceptual browsing in [14]. The purpose of this thesis work can now be
formulated as:

Design a distributable way to represent mind-maps in such a way that
it becomes possible to browse an interconnected network of them.

10 CHAPTER 1. INTRODUCTION

This formulation is very vague. Making it concrete has consisted of three steps.
First, to define a static representation of mind-maps, suitable for storage and trans-
mittal, that is sufficiently general for the above to work. This has been the most
important part of our work. Second, to design an API to manipulate mind-maps
and third, to design a browser that can browse such mind-maps.

1.3 How to read this paper

Chapter 2, The Meaning of Browsing, explains in detail what is meant by “brows-
ing”. It explains the concepts involved and gives a high level description of the
goals we have tried to reach. It is essential reading in order to understand what we
have accomplished.

Chapter 3, Elements of a Solution, gives an overview of our solution and mo-
tivation for the design decisions that we have made, as well as possible alternative
solutions. It gives the framework into which the following chapters fit.

Chapter 4, Representing Concept-maps in XML, Chapter 5, The Class Library,
and Chapter 6, Conzilla, describes our solution in some detail, including prob-
lems that we have not solved.

Chapter 7, Future extensions, describes components of an extended type of
solution that we have decided to postpone to some future date.

Chapter 2

The Meaning of Browsing

This chapter describes the specifications we have used for the project, and in-
troduces the terms we will use later on. It represents specifications we received
from the Garden of Knowledge group at CID and our own clarifications of those,
together with results from discussions during the project. The project has been
a moving target, where we have participated actively in the formulation of the
project. This chapter represents the most recent version of that formulation. Be-
cause of the way this specification has evolved, the term we is used in this chapter
to denote both us and the Garden of Knowledge group at CID.

2.1 A simple example

Suppose you want to know something about bicycles, and have decided to use the
system we have designed and a small Knowledge Patch of a friend to find out more.
You open the concept browser and in it, you find the diagram of Figure 2.1.

What can be seen in this diagram? You can see the concept “bicycle”, and other
concepts related to that concept in different ways. These relations will be described
in Section 2.3.2. Apart from just viewing the relations you can see here there are a
few things you can do. If you want to find out more about bicycles, you can mark
the “bicycle” concept and choose to view information of different kinds regarding
bicycles. Or perhaps you want to know more about wheels. One way is to click on
the “wheel” concept. You will be presented with a concept-map further analyzing
the “wheel” concept.

This is the vague idea that we want to specify in detail in this chapter, and later
present our implementation of.

11

12 CHAPTER 2. THE MEANING OF BROWSING

Figure 2.1: A diagram describing the “bicycle” concept.

2.2 The role of UML

The representation of mind-maps that we have used is heavily inspired by UML.
UML, designed by the Object Management Group (OMG), is originally designed
to be used as a modeling language for object oriented programming languages.
It contains specifications for drawing class diagrams describing the relationships
between classes, and many other important types of diagrams. The class diagrams
have been the most important inspiration for us.

We will not enter a more detailed explanation of UML here, as it is not de-
signed for being used the way we want our mind-maps to be used. It is, however,
interesting to observe the differences between what we have designed and UML.
These differences will be clearer as we proceed through this chapter,

2.3 Concepts

The most fundamental element of a mind-map is the concept. In UML class dia-
grams, the concepts are usually classes or objects in a programming environment.
Our concepts are more general, and just like the regular meaning of the word “con-
cept” they are meant to be used to describe any object of a thought process.

These concepts are meant to be placed in mind-maps. From now on, we will
use the term concept-map, which is part of the terminology of a Knowledge Man-
ifold, for the special form of mind-maps we are designing. The characteristics of
concept-maps will be described later.

2.3. CONCEPTS 13

The definition of a concept given above does not suffice to design a represen-
tation of a concept, of course. We have focused on a few important characteristics
of a concept, as described in the context of a Knowledge Manifold (see [12]):

1. A concept has connections to other concepts, which we call associations.

2. A concept has different ways to be described and explained, what we call
presentations. Such a presentation describes a concept from a certain point
of view, called an aspect of the concept.

3. A concept can refer to a concept-map that analyzes the concept further,
which we call a detailed map.

A concept is associated with a Knowledge Patch, and is probably seen in the
concept-maps defined there. But we want to be able to use the knowledge contained
in a concept in other contexts that the original designer may not even be aware of.
This leads to several important demands on a concept:

4. The representation of a concept should be platform independent.

5. It must be possible to incorporate a concept into any concept-map, together
with concepts from other Knowledge Patches.

6. A concept must be independent of any concept-maps where it is located.

7. A concept must not have any visual attributes such as size, position etc., but
only generic visual attributes that guides the presenting application in how
to present the concept.

These requirements can be seen as the distributability demands on a concept, and
marks the real departure from UML. UML does not deal with the problem of dis-
tributing the logical information in a diagram, but only with how to combine it
visually.

In contrast, the design taking form here is primarily a logical design. Concepts
do not have specific visual attributes, and are not placed in a specific concept-
map. Therefore, the role of UML is to provide inspiration for the elements of
the logical design of concepts and specifications for the visual design of concept-
maps. But inspiration for distributability must be found elsewhere, such as the
MOF, described in Section 3.5

14 CHAPTER 2. THE MEANING OF BROWSING

2.3.1 Aspects

An aspect of a concept is a way to think about it and deals with certain types
of questions regarding the concept. Take the concept “bicycle” as an example.
Aspects of this concept could be:

operational: How do I use a bicycle?

historical: How did bicycles develop?

conceptual: What is a bicycle, anyway?

Each aspect has several presentations. A presentation describes that aspect of a
concept in some detail. This amounts to a separation of what we want to know from
how we want it presented. Examples of presentations of the operational aspects of
the bicycle concept are:

visual: a picture of a person riding a bicycle

textual: a description of how to ride a bicycle

virtual: a 3D virtual bicycle simulator

The different presentations of a concept taken together are called the content of
the concept. This term will be used extensively in the rest of this report. Content
may be in the form of HTML pages, images, movies etc., but may as well involve
running an application on the user’s computer. Therefore, we allow content to be
as platform-specific as the concept designer finds necessary. The specification for
aspects are:

1. Each concept has a number of aspects, preferably of standard types

2. Each such aspect has a number of presentations, preferably of standard types.

3. The description of available aspects and presentations of a concept should
be platform independent, although the content itself may not be.

2.3.2 Associations

An association connects concepts. It describes how concepts relate to each other,
and may be of many different types. [12] and [14] focus on three types of associ-
ations defined by UML that are important for describing the relationship between
any types of concepts:

generalization connects two concepts where one of them describes a larger set of
objects than the other. Example: “vehicle” is a generalization of “bicycle”.

2.4. CONCEPT-MAPS 15

aggregation connects two concepts where one is a part of the other. Example:
“wheel” is a part of the aggregate “bicycle”.

classification connects two concepts where one is an instance of the other. Exam-
ple: “my bicycle” is an instance of the class “bicycle”.

These are our predefined associations1 .
What characterizes an association is:

1. An association connects two or more concepts.

2. An association is a special form of concept in the sense that it too may have
aspects with presentations and a detailed map.

3. An association has a type, which may be one of the above with predefined
semantics, or any other that the designer wants to define the semantics of.

As was the case with concepts, associations also must be distributable. For an
association to work in a distributed framework, we demand the following:

4. The representation of an association should be platform independent.

5. An association must be able to connect concepts from different Knowledge
Patches.

6. An association must be incorporable into different concept-maps.

7. An association must be independent of any concept-maps where it is located.

8. An association must not have any visual attributes such as position etc., but
only generic visual attributes that guide the presenting application in how to
present the association.

2.4 Concept-maps

What has been defined above is an abstract world of interconnected but indepen-
dent concepts distributed between different Knowledge Patches. Nothing has yet
been said about how concept-maps fit into this scheme. This will be our next goal.

A concept-map is a presentation of a part of the abstract world of intercon-
nected concepts. A concept-map is designed to emphasize certain associations

1For a discussion of why we have chosen these three as the most important, see [12] and [14].

16 CHAPTER 2. THE MEANING OF BROWSING

between certain concepts, and this way provide a limited view of how the concepts
relate to each other.

A concept-map is therefore necessarily a visual object, very similar to a UML
diagram. UML diagrams contain both logical information about concepts, like
name, type etc. and visual information like position of concepts and associations
etc. In contrast to this, a concept-map should contain all the visual information in
the diagram we want to construct, while concepts, associations etc. should contain
all the logical information.

To be more precise, a concept-map should contain:

1. A number of concepts.

2. A number of associations between those concepts, but not necessarily all
existing associations between them.

3. The visual information necessary to draw a diagram containing the above.

Usually, a concept-map is located in the same Knowledge Patch as the concepts it
contains, simply because the designer wants to provide important views of his or
her material. Concept-maps are, however, the last and most important step in com-
bining concepts from different Knowledge Patches in a distributed way. Therefore
we demand the following:

4. The representation of a concept-map should be platform independent.

5. A concept-map must be able to contain concepts from any Knowledge Patch.

6. It should be possible to generate simple concept-maps automatically from a
set of concepts.

7. A concept-map must not contain any logical attributes of the concepts and
associations.

2.5 Demands on a browser

It should now be much more clear what the role of a concept browser is. We must
put together all the fragments we have specified so far, into a coherent whole. A
concept browser should be able to:

1. Present a concept-map, which includes

Showing concepts and associations contained in the concept-map.

2.5. DEMANDS ON A BROWSER 17

Present the logical information contained in concepts in an intuitive
way.

2. Present the available aspects of concepts.

3. Possibly provide a way to display the content of concepts. This will not be
possible for all types of content anyway, as the content is allowed to be very
platform dependent.

4. Allow the user to view the detailed map of a concept. This is the fundamental
browsing step.

In addition, a concept browser should be able to keep several conceptmaps
easily reachable. This could be concept-maps that are very close in what they de-
scribe, and which the user therefore often switches between. Another case is when
the concept-maps are part of a course and you want course diagrams in the form
of concept-maps to be present along with the concept-maps containing the course
material, as described in Section 7.6. Still another case could be as bookmarks for
a user.

18 CHAPTER 2. THE MEANING OF BROWSING

Chapter 3

Elements of a solution

3.1 Overall structure

We have constructed a browser called Conzilla running as a Java applet inside
the Netscape browser. This concept browser displays concepts, concept-maps and
aspects loaded over the Web. The browser uses a Java API to retrieve and use what
we call components. These components, which are our concepts, concept-maps,
aspects etc., are structured in the form of XML documents, that combine to form a
diagram that can be presented to the user. You browse from one diagram to another
via identifiers identifying components. We use Netscape’s functionalities as a Web
browser to display contents in different formats.

3.2 The concept of a component

As described in Chapter 2, we needed to design a way to represent concept-maps
containing a number of concepts with connecting associations. Each concept and
association should have several aspects of content. We also wanted to be able to
represent a collection of several concept-maps. A concept is typically contained in
several concept-maps, and therefore a separation of concepts from concept-maps
is necessary to avoid duplicated information. Modularization is necessary.

Our solution is to let a component in our system be:

1. a coherent entity

2. uniquely identified

3. distributed with respect to other components, but still having the possibility
to be connected to them

19

20 CHAPTER 3. ELEMENTS OF A SOLUTION

4. easily created, stored and transferred over networks

Each component should also have meta-data describing the constructor of the com-
ponent and other information as demanded by the IMS Metadata standard [19]

Right now, we have two components dealing with the abstract world of con-
cepts, namely concept and contentdescription. The design of these two components
will be fairly stable in the near future. Opposed to these are the components deal-
ing with the visual representation. A 2-dimensional representation of the abstract
world of concepts such as a concept-map, is only one visualization. Therefore we
allow new components to form.

One desirable component would be a component describing a 3-dimensional
view of the concept space, (see [14]). One could also imagine other 2-dimensional
maps. These new components of course also needs a more or less new API and
some compatible browser.

The components we have designed are of five different types.

3.2.1 Concept

A concept consists of a title, a detailedmap and a number of aspects containing
contentdescriptions. A concept also contains associations, as well as references
to other concepts that contain associations to this concept. Thanks to these ref-
erences, it is possible to find the related concepts. This is not a problem within a
given concept-map where all concepts and associations are known, but in the global
conceptual environment it makes it much easier to search for related concepts this
way.

3.2.2 ContentDescription

A contentdescription holds information about the MIME type (see [6]) and meta-
data about the content. A Uniform Resource Locator (URL) says where to find
the content. Maybe it would be nice to have this as an Uniform Resource Identifier
(URI) instead (see [3]), but right now we are limited by using the Netscape browser
as a displayer, so an URL is a must. This component is intended as a preview of
the content, so that you can browse without having to engage in content. This way
you avoid actually loading a lot of data before you know if it is what you really
want.

3.2.3 ConceptMap

A concept-map is a collection of references to concepts and associations. The
concept-map further defines the layout of the concepts and associations. Each

3.3. UNIQUE IDENTIFICATION 21

concept is given a size and a position. Each association is described via a range of
points and each type of association is given visual attributes like line thickness and
arrowhead form etc. A concept-map, not the individual concepts, is the starting
point for browsing of concepts for the regular user.

3.2.4 MapSet

A map-set is a collection of concept-maps, typically shown in a browser as a set of
tabs. A concept-map always has a default map-set, but if this is used or not is up
to the browser. A browser can choose to keep some extra maps not defined in the
current map-set. These maps could be personal maps created by the user or maps
describing the course context etc.

3.2.5 AspectSet

An aspect-set is an administrative component for handling the different aspects and
presentation types that a concept-map’s concepts can have. Every concept-map has
an aspect-set. It defines the aspects and presentations that are interesting within this
context. As it is a component of its own, the same aspect-set can be used in several
concept-maps. Typically, the same aspect-set is used for a whole subject field.

3.3 Unique identification

Defining a way to access components is a complicated problem with three main
parts. The components need a unique identity, but we also need means to locate
the components and retrieve them. The identity of a component could typically be
unique over the whole web or the local harddisc. The problem is to define these
identities in a general way so that they can be resolved in the right way.

The means to locate components depends on how the identifier is constructed.
It could point directly to the location of the component, or it could involve a more
lengthly investigation via a database or some advanced directory search perhaps
using Lightweight Directory Access Protocol (LDAP).

Still the problem of retrieving the component when you’ve found it remains.
Possibilities include HTTP, FTP or indirectly via a downloadable archive such as
a Java Archive (JAR) file. Another way is not to retrieve it at all, i.e., to use the
remote object via a CORBA-IDL interface or similar.

A solution to these problem should:

1. uniquely identify each component for the browser

22 CHAPTER 3. ELEMENTS OF A SOLUTION

2. allow but not demand the identifier to specify how to locate and retrieve the
component

The first requirement is satisfied by conforming to the URI standard1:

A Uniform Resource Identifier (URI) is a compact string of characters
for identifying an abstract or physical resource.

The second requirement is met by allowing conformance to the URL standard:

The term "Uniform Resource Locator" (URL) refers to the subset of
URI that identify resources via a representation of their primary access
mechanism (e.g., their network "location"), rather than identifying the
resource by name or by some other attribute(s) of that resource.

Note that the URL standard allows us to specify just the location and not the re-
trieve method (i.e., allows us to use a CORBA solution even for URLs)

Although many URL schemes are named after protocols, this does not
imply that the only way to access the URL’s resource is via the named
protocol. Gateways, proxies, caches, and name resolution services
might be used to access some resources, independent of the protocol
of their origin, and the resolution of some URL may require the use of
more than one protocol.

All in all, we want to set up specifications for our type of identifier in such a way
that it is always a URI, sometimes a URL and maybe defines a retrieve method. The
application itself could be allowed to choose between different locator services and
favorite protocols.

In addition, we want to specify some standard ways of component lookup. See
Section 7.7 for details.

The current implementation is very primitive although it vaguely resembles an
URI. But we strive for full compliance with the standard described in [3].

3.4 Implementation

Now when we know what a component should be, we need to find representations
and a suitable programming environment. One trivial but very demanding solution
could be to do everything from scratch, starting only with a programming language
and primitive socket connections over the Internet. Obviously this would not fit
an experimental project like ours, as we would be spending time on the wrong
problems. The problem is to find the suitable tools for an implementation.

1This quote and the following ones in this paragraph are from [3]

3.4. IMPLEMENTATION 23

3.4.1 The role of the Web browser

Since content is allowed to be in many different forms it would be a lot of work to
implement a content displayer on our own. A content displayer would preferably be
able to display images, sound, video, text etc. The most general content displayer
is the Web browser.

In addition, much of the available computerized learning material is already ac-
cessible via the Web, and it would simplify the development of content immensely
if it can be developed directly for the Web. So we have decided that using a Web
browser as content displayer solves the problems of displaying content in the most
general way.

Since we can’t expect an immediate worldwide acceptance of our work, we
also need a way to get our own application program to work on different platforms
and for most users. This is also solved by somehow letting the application work
inside a browser.

In short, the environment that fits our purposes best is provided inside a Web
browser (see Section 6.7 for a further discussion of the Web browser). It is, how-
ever, important that the overall design is not dependent on browser functionality.
If we some day want to develop a specialized content displayer outside of the Web
browser environment, we should be able to use components easily in spite of this.

3.4.2 The role of XML

A solution for distributing and storing concepts and concept-maps is XML. XML
is defined by The World Wide Web Consortium (W3C) as a meta-language for
markup languages. A component will be represented as a XML-document, with
one type of document for each type of component. These XML-documents will
be loaded over the Web, parsed into a Document Object Model (DOM) (see Sec-
tion 5.3), and finally displayed in the correct manner. An application will be re-
sponsible for the procedure, running inside or together with a browser. The next
generation of browsers (Netscape version 5 and Internet Explorer version 5) will
support XML directly as a way of representing arbitrary information. This could
be used to retrieve and parse the component and then just let the application access
the information. It is questionable if it ever will be possible or even preferable to
let a web-browser take over the application’s job completely. This could in theory
be done by a complicated Extensible Stylesheet Language (XSL) document. XSL
is a special form of stylesheet describing the presentation of XML documents. We
have not thoroughly investigated whether this will be possible to do or not.

The design goals of XML that affect us are2:

2Taken from [5]

24 CHAPTER 3. ELEMENTS OF A SOLUTION

1 XML shall be straightforwardly usable over the Internet.

4 It shall be easy to write programs which process XML documents.

6 XML documents should be human-legible and reasonably clear.

9 XML documents shall be easy to create.

10 Terseness in XML markup is of minimal importance.

Number 1,4,6 and 9 fit our demands perfectly, while number 10 merits a brief
discussion. The drawbacks with a non terse representation includes unnecessary
download time and a user-hostile editability. But you seldom want to edit by hand3

and the largest download time isn’t due to concepts and concept-maps but rather
depends on the actual content in form of images, movies, sounds and such. Al-
though XML documents do not provide the shortest representation of concepts and
concept-maps you can think of, we accept this fact since the advantages by far
outweigh the disadvantages. We note that other representations of UML diagrams
also use XML. See Section 3.5.2 and [18] for a discussion.

3.4.3 The Role Of Java

As discussed above, we want our application to:

1. be platform independent to improve acceptance

2. easily display content using a web browser

3. be extensible and flexible, so that new applications can be developed from
our implementation in a simple and straightforward way.

To get an application to work on different platforms together with different
browsers without rewriting the code is clearly a job for the Java programming lan-
guage. The application we have developed can be run both inside a browser and as
a stand-alone application remote-controlling a browser, if one exists, to display the
content (see Chapter 6 for a discussion).

Java is very useful in other respects as well. Java is a very useful prototyping
language for several reasons:

using an object oriented language focuses the design on the structure rather
that on the implementation.

simple memory management.

3See Section 7.2

3.5. A COMPARISON WITH MOF 25

abundance of useful libraries.

Java is also very well adjusted for usage together with XML, and there are
several good parsers for XML written in Java. The reason for this is amongst other
things the good Internet connectivity features, and the good international character
set support of Java.

In short, the Java environment fitted us perfectly in every respect.

3.5 A comparison with MOF

The idea of a distributed object model for UML-like diagrams is not new. This
Section will compare our design with that of another distibuted modeling system:
the MOF.

The Meta Object Facility (MOF) is a proposed standard for meta-models devel-
oped by OMG in cooperation with several large software vendors. A meta-model
is in essence a modeling language such as UML, and the MOF has a similar scope
to that of UML. As described in [16], the main purpose of the OMG MOF is to

provide a set of CORBA interfaces that can be used to define and ma-
nipulate a set of interoperable metamodels.

In practical terms, the MOF is a distributed modeling language, much like
what we want to design. The MOFs initial purpose is to be used in object oriented
analysis and design (similar to UML), but the OMG expects the MOF to be used to
model other information systems. So the question arises: why not use the MOF?
This question demands a lengthy discussion.

3.5.1 Problems with MOF

There are several problems with the MOF that makes it problematic to use for our
purposes. The most important are described in the following sections.

Modeling objectives

The MOF Specification [16] states that the MOF designers provide

a balanced model that is neither too simplistic (one that defines only
classes, attributes, and associations) nor too ambitious (one that has all
object modeling constructs as required in a general purpose modeling
language like the UML). The designers have specified this model to be
rich enough to define a variety of metamodels and precisely enough to
be implemented in CORBA environments.

26 CHAPTER 3. ELEMENTS OF A SOLUTION

What they wanted to design was a model that would be immediately usable in
object oriented analysis and design. One important part of the MOF is the MOF
to CORBA IDL mapping, that makes it possible to automatically generate pro-
gramming interfaces for objects descibed by the MOF. This means that an object
described by the MOF primarily has a programming interface.

Our purpose differs from this in that the models we want to construct are mod-
els of any thinkable concepts. Such concepts are often not specific enough to be
described as objects in a programming environment. So we actually want a more
simplistic model that is not intended to be directly usable as a programming con-
struct.

Modeling limitations

The MOF has several serious limitations with respect to their description of associ-
ations. Firstly, they only allow associations of degree two (see Section 3.6.2), even
though this will change in future versions of the MOF specification. Secondly, and
more serious, MOF does not view associations as being very important entities on
their own. As described in Section 3.6.3, our design will allow associations to be
full-fledged concepts, having all attributes the concepts of today have. We believe
this is a fundamental flaw in MOF when it comes to usability in other contexts than
object oriented analysis and design.

Distributability

As the MOF design is done in CORBA, the MOF describes a network of intercon-
nected objects. There are serious problems with using this directly as a basis for
a project like ours. The main problem is that MOF objects are directly connected
to each other. This would imply serious stability problems if this was to be dis-
tributed globally. A large global network of interconnected CORBA objects is not
yet feasible, even though this may be the case in the future.

The primary use of the MOF is inside a single development environment, called
a Repository, and inside this Repository the objects are connected directly. The
MOF specification [16] does allow references to other objects in other Repositories,
but notes that

it is recognized that the great majority of these object interactions will
remain within one vendor’s boundary

which is a position that we simply cannot accept for Knowledge Patches, which
must be designed with the primary purpose of being used outside the Patch, inter-
connected to other Patches.

3.5. A COMPARISON WITH MOF 27

Our solution is to let the objects reference each other indirectly via identifiers,
and to be independently distributed. In spite of this, nothing stops us from de-
signing the objects in CORBA, using the CORBA Naming Service for locating
components, and even letting certain CORBA objects be connected directly. But
this must not be the primary design philosophy.

Another issue is CORBAs heavy-weight profile. By distributing objects packed
in XML documents, we allow lighter operation of the whole system, especially
when distributed over the Web.

Prototypability

We needed a simple implementation that would give us the relevant ideas for the
future of this project. Implementing the system using MOF would distract us from
fundamental design issues that arise when trying to model the mental abstractions
of the human mind.

By using our own, much more simplistic implementation, it is possible to give
a concrete form to our objectives and how they differ from the objectives of both
the MOF and UML.

3.5.2 MOF and XMI

The XML Metadata Interchange (XMI) format, is designed as a serialization of a
UML metamodel described using the MOF. This serialization is done using XML.
Why isn’t this a suitable representation of our objects? The reason is that it shares
many of the problems with the MOF, namely:

object oriented analysis and design fixation

distributability problems. An XMI document describes all classes and as-
sociations contained in one closed model, typically one Repository. This is
orthogonal to the modular design we want, and indeed, the goal of XMI as
described in [17] is to ease

the problem of tool interoperability by providing a flexible and
easily parsed information interchange format. In principle, a tool
needs only to be able save and load the data it uses in XMI format
in order to inter-operate with other XMI capable tools.

That is, XMI is not designed as a way to decentralize information but as a
way to transfer information.

28 CHAPTER 3. ELEMENTS OF A SOLUTION

prototypability. The XMI Specification is truly a large one, and would dis-
tract us from more important tasks.

So we have decided not to use XMI. This is also the right place to mention
UML Exchange Format (UXF) described in [18] that is a more lightweight XML
description of UML diagrams which has inspired us in many ways.

3.5.3 Conclusion

We have concluded that the MOF is not optimal to use for our project. However,
the overall tendency towards componentification, object oriented modeling, and
information distributability give us hope that there will be a suitable generalization
of the MOF available at some time in the future.

What we have designed can be described as a generalization of the MOF in the
directions of

usability outside programming environments, more precisely for modeling
human knowledge in general,

distributability, and

ability to present parts of a very large model in small diagrams

Viewed in his way, it is obvious that MOF has inspired us in important aspects
as a way to represent and generalize UML diagrams.

3.6 Future considerations

The component framework introduced in this chapter has not yet stabilized. This
section will explain some of the problems and give some idea of what the compo-
nents will look like in the future.

The main problem we have with the current implementation is concerned with
associations. This problem has several independent parts, and we will now analyze
them in turn.

3.6.1 The location of associations

In the current implementation, an association is not a component in itself, but in-
stead it is placed within one of the concepts it connects. This organization has
several problems. The most important is that this organization effectively makes it
impossible to connect two concepts that you do not have the right to edit. Many

3.6. FUTURE CONSIDERATIONS 29

cases are imaginable where you wouldn’t even want to include the association in
the concept, for example when you construct your own personal maps connecting
concepts that you are studying (and perhaps your class of 20 pupils are all doing
the same).

In the future we want to allow associations to be added to an already existing,
and for the creator of the new association uneditable, concept. The solution is
to allow the associations to be components of their own instead of being part of
the concept component. Actually, the existence of this presumably new externally
added association won’t be known to everyone else. Only if the association is
explicitly included in a concept-map or something similar would the rest of the
world know of its existence.

This does not stop the Knowledge Patch designer from wanting the concepts
to know which associations they are playing a role in. This simplifies finding the
concept’s neighborhood enormously (see Section 7.7 for a discussion of searching).

This is achieved in the current implementation by allowing each concept to
contain references to other concepts that contain associations to it. When associ-
ations are components on their own, this is solved by allowing references to the
association directly instead. This is a much more natural design.

3.6.2 The structure of associations

During the course of our work, we have found it necessary to put further demands
on associations. This section tries to explain the problem and the reason for our
decisions, and point to a better solution of the problem.

Let us define a few terms that are often used when discussing associations4 :

role is an end of the association. We say that a concept plays a role in the associ-
ation. Each role is of a certain type, and an association may be able to hold
roles of several different role types.

degree or arity is the number of different role types that an association can have.
In the case of a generalization there are only two role types: the general and
the specific. We can imagine more complicated cases. Take a book loan as an
example. There are three role types involved: the person loaning the book,
the library and a number of books. So this association has degree three.

multiplicity of a role type is the number of concepts that play roles of that role
type in an association. In the book loan example, one person can loan two
books at the same time from a library. So the multiplicity of the “book” role
type in this book loan is two, even though more books are allowed

4The terminology is taken from CORBA::Relationships, as described in [15]

30 CHAPTER 3. ELEMENTS OF A SOLUTION

The problem

Our implementation limits the degree of an association to be exactly two. There
are several reasons for this. First, the three fundamental associations we use are
all of degree two. Second, associations of higher degree would introduce much
complexity that we did not find necessary when designing the first implementation.
Thirdly, higher-degree associations can be imitated by introducing a new concept.
In the book loan example, you can introduce the concept “book loan” and construct
three associations to the other concepts.

Our implementation allows one of the two ends in an association to have multi-
plicity higher than one. The reason for this is completely visual. When for example
looking at the “wheel” and “pedal” concepts as parts of the “bicycle” concept, it
would not be especially intuitive to draw the “part of” association using separate
arrows for each of them. Instead we want to group them together so that they have
a common end touching the bicycle concept. This behavior is illustrated in Figure
2.1.

Our decisions differ from that of the UML designers. They allow degrees
higher than two, but only at the cost of introducing a rhombic “association symbol”
for what they call n-ary associations, that is located between the concepts. The dif-
ference between this and introducing a new concept we find negligible. Interesting
to note is that the MOF has only allowed associations of degree two (see Section
3.5.1), something that is also true of UXF (see Section 3.5.2).

Our decisions also differ from those of the CORBA::RelationShips de-
signers (see Section 5.2 for a discussion). CORBA::RelationShips is, how-
ever, designed more for relationships between physical resources than for repre-
senting knowledge, but it is an unquestionable fact that their design is more general
than ours when it comes to associations.

The solution

The upshot of all these considerations is that our present design of associations
is actually not very good. The concept component can certainly not be called
coherent with the above discussion in mind. The question is how to solve the
problems with the current implementation without introducing new problems.

We have already designed a new implementation that we believe solves all
these problems as well as being much more consistent. It is heavily inspired by
the CORBA::RelationShips interface. We will now turn to describing the
new design. The description cannot be very detailed as the new design is not yet
implemented, but we believe implementing it is fairly straightforward.

The solution is to let association be a component of its own as described in

3.6. FUTURE CONSIDERATIONS 31

Section 3.6.1, and to introduce a new component, the association-type. Each asso-
ciation must be of some association-type. The association-type contains informa-
tion about the degree of the association and the names of the different role types in
the association, as well as the allowed multiplicity of each role. For example, the
“book loan” association-type has the following attributes:

Degree: 3

Roles:

– loaner; allowed multiplicity: 1

– library; allowed multiplicity: 1

– book; allowed multiplicity: 1-

The association-type also defines abstract presentation attributes, such as color,
line thickness and arrowhead type. The presenting application is free to interpret
these attributes in a suitable way, depending on the presentation medium. The
concept-map browser will use a presentation that closely resembles UML dia-
grams.

Every association then contains roles, each being of one of the role types de-
fined in the association-type. The multiplicity must be within the limits set by the
association-type. Each role declares which concept it represents and possibly other
attributes.

Finally, a concept-map includes the concepts and associations it wants to dis-
play and gives them visual attributes, much like today. One important addition is
that a concept-map will allow visually grouping together associations of the same
type, with one concept playing the same role in all of them as was discussed earlier.
All in all, the design results in the same visual appearance in most cases but with a
much better architecture and separation between abstract and visual information.

A natural question in this context is if concepts also need a type. This question
needs to be examined in more detail.

3.6.3 The essence of associations

Associations and concepts actually share many features. The obviuos similarity is
of course that they both have content, as discussed in Section 2.3.2. Visually, they
are very dissimilar, but there are acually reasons for making them share features. In
UML, an AssociationClass is the type of an object that represents an association.
Many interesting relations between objects are often represented using an Associ-
ationClass. Examples include a library application, that introduces the BookLoan

32 CHAPTER 3. ELEMENTS OF A SOLUTION

class, which is clearly an AssociationClass between a Customer, a Library and a
number of Book objects.

An AssociationClass is a Class (=type) on its own, and similarly we view asso-
ciations as being concepts on their own. The weakness in the current implementa-
tion is that it would be natural to allow associations between associations, such as
an instance of the BookLoan class. This is not allowed.

So we have decided to extend our redesign of associations even further. We
want to introduce a generalization of both association and concept. It would not be
right to call this generalization either concept or association, so we have named it
neuron5.

A neuron has the following features:

it has a type which is essentially identical to the association-type above, but
which will be called the neuron-type.

it connects zero or more other neurons.

it has aspects.

it has meta-data.

Typical neuron-types are:

“concept” is a neuron-type of degree zero.

“generalization” is a neuron-type of degree two (with the obvious roles).

“attribute” is a neuron-type of degree one.

“event” is another neuron-type of degree zero.

As was the case with association-types, the neuron-type will give an indication
of the presentation of the neuron. This will now include the possibility of present-
ing association with a “box” like concepts have, and just as AssociationClasses can
be presented in UML.

This way we have solved the problem of giving concepts a type, by simply
letting them be neurons, and allowing the neuron-type to contain information about
the characteristics of that type.

Note that this leads the way towards introducing other kinds of maps than
concept-maps, such as activity diagrams (see [4]) with different semantics than
concept-maps. This was illustrated by introducing the “event” type above.

5A neuron connects other neurons. Our neurons connect to form a globally interconnected neural
network, which we visualize using computer tomography (concept-maps)

Chapter 4

Representing Components in
XML

4.1 A short introduction to XML

XML is a language describing a class of data-objects called XML documents. How
such a XML-document is written is determined by what is called a Document Type
Definition (DTD). The structure of a XML-document resembles that of HTML, i.e.,
it is a markup language, and like HTML is derived from SGML. But HTML is only
described by one DTD. In contrast, XML provides a way to define a language like
HTML by defining its corresponding DTD. We have designed one DTD for each
component, and hence every component can be transported as a separate XML-
document.

4.2 The component representation

The components described in Section 3.2 will here be described as XML-documents.
Since just listing every component DTD is not very pedagogical (and indeed does
not convey all the semantics you need to know) we will present a simple example
for each component. The graphical presentation of the examples is shown in Figure
4.1.

4.2.1 The <MetaData> tag

The <MetaData> tag is contained within every component and presents a col-
lection of meta-data tags and values. Every attribute is contained within the tag
<Tag> with an attribute NAME describing the type of meta-data. This is now a

33

34 CHAPTER 4. REPRESENTING COMPONENTS IN XML

Figure 4.1: The concept, concept-map, map-set and aspect-set examples graphi-
cally illustrated. This interface closely resembles the conceptual browsing interface
described in [14]

rather loose set of data but will in time conform to the standard defined by the IMS
Metadata standard (see 7.5).

The data should clearly specify who created the component, a short descrip-
tion of it, how and in which context it should be used etc. A special case is the
content-description component which does not describe itself, but describes a piece
of content in some form somewhere.

The <MetaData> tag won’t be further commented in the examples.

4.2.2 An example concept

This concept represents the mental picture of what a vehicle is. It has been short-
ened and simplified for presentability here.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE Concept PUBLIC "-//CID//DTD Concept 1.0//EN" "concept.dtd">

<Concept CONCEPTID="CID:vehicle">
<MetaData>

<Tag NAME="Creation_details">Matthias Palmer, 990531</Tag>
<Tag NAME="Keywords">material | transportation | pollution</Tag>
<Tag NAME="Description">A human manufactured

transportation object.</Tag>
</MetaData>
<LinkData>

<DetailedMap MAPID="CID:vehicletypesmap"\>
<Aspects>

4.2. THE COMPONENT REPRESENTATION 35

<Aspect TYPE="Conceptual">
<AspectPresentation TYPE="Visual"

CONTENTID="CID:whatisvehicle">
<AspectPresentation TYPE="Audible"

CONTENTID="CID:vehiclesounds">
</Aspect>

</Aspects>
</LinkData>
<Presentation>
<Title>Vehicle</Title>

</Presentation>
<Generalization ASSOCIATIONID="1" ROLE="specific">

<MultiEnd CONCEPTID="CID:humanobject">
<Multiplicity HIGHEST="1"/>

</MultiEnd>
</Generalization>
<AssociationRef CONCEPTID="CID:bicycle"/>

</Concept>

The first two rows are of a technical nature and will be ignored. Let us only
notice that the second row specifies the DTD describing the XML-document for
the concept component.

<Linkdata>

is also optional, containing the concept’s different ways of presentation. First a
<DetailedMap> is given, where a component ID, CID:vehicletypesmap
(a concept-map), is given as an attribute. Second there is several <Aspect-
Presentation>swithin the <Aspect> tags. The component IDsCID:what-
isvehicle and CID:vehiclesounds has the same type conceptual (see
Section 2.3.1). But they have different presentations: Visual and Audible.

<Presentation>

is optional and holds a <title>, Vehicle. This is not necessarily the right
place for this information. See Chapter 2 for a discussion about separation of
abstract and visual information.

<Generalization> and <AssociationRef>

are both associations where <Generalization> is one of the three predefined
associations. The attribute ASSOCIATIONID is a unique ID for the association
within the concept scope. When several associations are placed within a single
concept, this is necessary to distinguish associations located in the same concept

36 CHAPTER 4. REPRESENTING COMPONENTS IN XML

from each other, for instance in concept-maps. According to the discussion in Sec-
tion 3.6.2, an association has a <SingleEnd> and several <MultiEnd>s. The
optional tag <SingleEnd> has been left out but all <MultiEnd>s are neces-
sary. The <Multiplicity> tag describes the multiplicity of the concept in each
end. There is two integer attributes HIGHEST and LOWEST, both optional. See
Section 3.2.1 in order to understand the phenomenon. <AssociationRef>.

4.2.3 An example concept-map

<ConceptMap MAPID="CID:bicyclemap">
<MetaData>

<Tag NAME="Title">Bicycle Overview</Tag>
<Tag NAME="Author">Matthias Palmer</Tag>
<Tag NAME="Date">28, may, 1999</Tag>
<Tag NAME="Version">0.1</Tag>

</MetaData>
<MapSet MAPSETID="CID:cycledemo"/>
<AspectSet ASPECTSETID="CID:materialworld"/>
<BoundingBox WIDTH="400" HEIGHT="400"/>
<ConceptStyle CONCEPTID="CID:bicycle">

<BoundingBox WIDTH="60" HEIGHT="30"/>
<Position X="170" Y="215" RELATIVE="lowleft"/>

<AssociationStyle ASSOCIATIONID="1">
<SingleEndStyle>
<Line TYPE="polygon">
<Position X="200" Y="155"/>
<Position X="200" Y="185"/>

</Line>
</SingleEndStyle>
<MultiEndStyle CONCEPTID="CID:vehicle">
<Line TYPE="polygon">
<Position X="200" Y="155"/>
<Position X="200" Y="125"/>

</Line>
</MultiEndStyle>

</AssociationStyle>
</ConceptStyle>
<ConceptStyle CONCEPTID="CID:vehicle">

<BoundingBox WIDTH="60" HEIGHT="30"/>
<Position X="170" Y="125" RELATIVE="lowleft"/>

</ConceptStyle>
<VisibleConcept CONCEPTID="CID:bicycle"/>

</ConceptMap>

4.2. THE COMPONENT REPRESENTATION 37

<MapSet> and <AspectSet>

refers to a map-set component and an aspect-set component, respectively. See
Sections 3.2.4 and 3.2.5 respectively.

<BoundingBox>

is the size of the concept-map given in pixels.

<ConceptStyle>

is a number of tags describing the graphical representation of a concept and its as-
sociations. A <BoundingBox> and a <Position> gives the size and position
of the concept, which will be displayed as a rectangle. In the future, concepts and
associations will have several possible visualizations, possibly following UML-
standards.

In the example the association is between the vehicle and bicycle con-
cepts. Since the association lies within the bicycle concept it makes sense to
have the <AssociationStyle> within the bicycle <ConceptStyle>.
The<AssociationStyle>contains a <SingleEnd> and one or several <Multi-
End>s describing the ends of the association. In this case the association is a gen-
eralization where vehicle is at the general end and bicycle at the specific end.
Of course there can be several generalizations or some other association from the
bicycle concept. To include styles for them, you only need to identify which
association you want to describe via the ASSOCIATIONID, (see Section 4.2.2).

An association is described by several <Line>s, one for each role. Each such
line contains <Position>s. The last <Position> is the one ending at the
concept playing that role. The attribute TYPE defines how the line should be drawn,
polygon is just simple straight lines between the <Position>s. Another type
could be spline, a smooth interpolating curve algorithm. The three built-in types
of associations use arrow heads as specified by UML.

4.2.4 An example map-set

<MapSet MAPSETID="CID:cycledemo">
<Map TITLE="The bicycle course" MAPID="CID:bicyclecourse"/>
<Map TITLE="The bicycle" MAPID="CID:bicycleoverview"/>
<Map TITLE="The bicycle easy" MAPID="CID:bicyclemap"/>

</MapSet>

This component is easy to understand. The <MapSet> just contains several
<Map>s, each containing a title and an optional icon belonging to the concept-

38 CHAPTER 4. REPRESENTING COMPONENTS IN XML

map identified by the component ID given in the MAPID attribute. See Sections
2.5 and 3.2.4.In the picture 4.1 we see <MapSet> as a set of tabs on top of the
concept-map. The concept-map choosen is CID:bicyclemap.

4.2.5 An example aspect-set

<AspectSet ASPECTSETID="CID:materialworld">
<AspectType NAME="Descriptional"/>
<AspectType NAME="Conceptual"/>
<AspectType NAME="Operational"/>
<AspectType NAME="Historical"/>

<PresentationType NAME="Visual"/>
<PresentationType NAME="Audible"/>

</AspectSet>

Both <AspectType> and <PresentationType> are explained in Sec-
tion 3.2.5.

4.2.6 An example contentdescription

<ContentDescription CONTENTID="CID:bicycleparts" MIMETYPE="text/html"
URL="http://www-lexikon.nada.kth.se/skolverket/bilder/teman/tema18.JPG">

<MetaData>
<Tag NAME="Language">Swedish</Tag>
<Tag NAME="Content">En cykel och andra fordons
<Tag NAME="TargetGroup">Schoolchildren,

students in the swedish language</Tag>
<Tag NAME="TargetAge">any</Tag>
<Tag NAME="TargetMentalAge">curious child</Tag>

</MetaData>
</ContentDescription>

Before you load the content of a concept you can examine a <Content-
Description> where the attributes URL and MIMETYPE describes where to
get and how to treat the actual content. The <MetaData> consists of relevant and
searchable descriptions of the content.

Chapter 5

The class library

In order to use the XML components described in the previous chapter, we wanted
to design an API for accessing components that we could use when developing
a concept browser. The API could be usable in other contexts than the browser,
though, and it is important that the API is sufficiently general to enable the con-
struction of any kind of browser. Therefore we have formulated a few design goals
that have led us through the design process. They are presented here.

This chapter can be read as an introduction to using the library, but it is not
meant as a reference manual. We refer the interested reader to the source code for
that purpose.

5.1 Design goals

The overall design of the class library is meant to reflect the component idea in-
troduced in Section 3.2. A natural design is to let each component be represented
by a Java object. This is essentially what we have done. But there are important
differences between a static representation as described in Chapter 4 and a dy-
namic representation in an object oriented programming language. This API must
be practical to use directly in an application, and therefore it must hide many of
the details. For example, it would be practical if one could traverse the relations
between concepts as a graph directly, i.e., replacing the reference via ID to other
concepts, with an object reference in Java. This and similar considerations demand
some consideration.

It is obvious that there must be an strong correspondence between the elements
of the static representation and the structure, names etc. in the Java representa-
tion. A typical scenario would be that the objects are constructed from the static
representation, and possibly later saved into the static representation. But it is also

39

40 CHAPTER 5. THE CLASS LIBRARY

possible that components are represented in some other way, such as some un-
known form of database storage or a more dynamic approach like CORBA, where
the objects already reside on remote computers. Therefore the Java representation
must not be too heavily dependent on the XML representation.

These considerations has lead to a few important design goals:

1. The API should not be dependent on XML or on the actual XML represen-
tation of components. It should be possible to add other static or dynamic
forms of representations.

2. The API should be easy to use in an application.

3. The API should not contain any graphics code or interactive code. It should
be possible to implement any type of user interface using the API.

These goals have been mostly fulfilled.
When it comes to how the API should deal with the different components,

it is important that the API mirrors the design philosophy behind the component
framework. In particular, it is important that the idea of a completely non-visual
global conceptual environment is reflected in the API. Therefore, the API should
consist of two layers, where one deals only with the abstract concept information
without using a concept-map, while the other takes care of providing access to
concept-maps. Ideally, the API should be able to use the same concept in several
concept-maps at the same time, to enable different forms of presenting concept-
maps. This is not the case with our API at this time, even though the separation
between the two layers have, in principle, been carried out successfully.

5.2 CORBA::RelationsShips

CORBA::RelationShips, described in [15], is a CORBA interface package
containing a standardized API for accessing objects and their relationships, that
in some ways resembles our configuration of related concepts. It is, however,
designed more for relationships between physical resources than for representing
knowledge, and shares the distributablility problems of MOF, as described in Sec-
tion 3.5.1.

We decided that this first prototype was a too early implementations to focus
on a CORBA solution, but the package has been an important source of inspiration
for the design of the API. CORBA::RelationShips is worth looking into when
designing a CORBA solution, as discussed in Section 7.4.

5.3. XML AND JAVA 41

5.3 XML and Java

XML is very well adjusted to work in a Java environment, as described in Section
3.4.3. There are several ways to use XML in Java. One way is to use the standard
DOM as defined by W3C, and a DOM-capable XML parser. The DOM is intended
to be able to describe any type of XML document containing arbitrary markup.
However, our decision to use our browser in a web environment has led to demands
of simplicity and smallness.

A DOM parser constructs a very complicated and heavyweight object repre-
sentation, and is in itself complicated. This DOM representation is much more
general than we need, though, as our DTDs do not allow any free-text markup.

We have therefore decided to use a simpler XML parser called Ælfred, which
is freely available (see [1]). It is extremely small and simple even though it is
complete, and using it we have developed a very simple document model that fits
our very simple DTDs, but would not fit for example an HTML DTD.

5.4 Packages

We will now try to describe the purpose of the different Java packages that we
have implemented, in order for the reader to understand how the API is structured.
In accordance with the Java Language Specification (see [9]), the name of the root
package of all our packages is constructed from the name of the organization which
has developed it. The root package is called se.kth.cid.kt.Conzilla.

5.4.1 The concept-related packages

This section describes the packages that are part of the abstract conceptual layer
of the API. These are for the most part independent of the concept-map part of the
API.

Concept

This is the central package, containing classes that represent the abstract infor-
mation contained in concepts and associations. The types in this package are all
interfaces, meaning that there is no implementation of the types in this package.

Concept.Xml

This package contains the implementation of the interfaces defined in the Con-
cept package. The implementation uses XML for loading concepts.

42 CHAPTER 5. THE CLASS LIBRARY

Content

This package contains the representation of content. As described in Section 3.2.2,
we use a component called contentdescription for describing content. This package
implements this component.

Content.Xml

This package contains classes for loading objects defined in Content from XML
documents.

5.4.2 The concept-map-related packages

These packages contain the implementation of concept-maps. They build on the
concept-related packages to connect concepts with their visual attributes.

ConceptMap

This package contains classes for dealing with the information in a concept-map
component. It does not deal with the visual information of each concept, but only
descriptive information belonging to the concept-map, such as the map-set and the
aspect-set.

ConceptMap.Xml

This package contains classes for loading objects defined in ConceptMap from
XML.

ConceptStyle

This package contains classes that implement the visual attributes of concepts and
associations in a concept-map.

ConceptStyle.Xml

This package contains classes for loading objects defined in ConceptStyle
from XML.

5.4.3 Miscellaneous packages

These are packages that do not really belong to any of the above layers.

5.5. THE FUTURE OF THE CLASS LIBRARY 43

Component

This package contains the implementation of the unique identifiers discussed in
Section 3.3, including classes for locating and downloading components. It also
contains classes that implement other features common to all types of component.
At this time, this is limited to a representation of meta-data.

Component.Xml

This package contains classes for loading objects defined in Component from
XML documents.

XmlLoader

This package contains our interface to the Aelfred XML parser to simplify loading
and interpreting XML documents. The design hides Aelfred-specific details of the
parsing so that the library can easily be adjusted to use any XML parser.

XmlLoader.DTD

This package consists of classes containing pre-loaded versions of the DTDs we
use for the components. The motivation behind this is that having to load a DTD
across the net every time an XML document is loaded is an unnecessary waste of
time. As we have decided to put default values and fixed values of certain attributes
in our DTD, actually having access to the DTD is important.

util

This package contains various utility classes we have found necessary to develop,
but which are not specific for concept browsing.

5.5 The future of the class library

The class library will probably change in many ways before it stabilizes. These are
the main issues to be solved in the near and more distant future:

It will adjust to changes in the XML DTDs and the component framework.

Better separation between the abstract concept layer and the concept-map
layer.

Extending the API to allow editing and storing components. See 7.2.

44 CHAPTER 5. THE CLASS LIBRARY

It will probably be adjusted to Java 1.2 when there is better support for 1.2
in browsers. This includes several things:

– The Collection framework.

– The 1.2 security model.

and more.

CORBA interfaces for the central objects. See Section 7.4.

JavaBeans conformance.

Chapter 6

Conzilla

6.1 Background

We have developed the Conzilla browser in parallel and as a source of inspi-
ration for the different components and the class library. From the beginning it
has been clear that our browser is just one of many possible applications display-
ing concepts and associations from different approaches. Therefore the browser
is primarily intended to prototype some of the possibilities provided by a concept
browser.

Our approach has been straightforward and has hopefully resulted in a very
natural concept-map browser, that displays human-generated concept-maps. Auto-
matically generated maps is a possibility left to the future.

6.2 The Graphical User Interface

To write a Graphical User Interface (GUI) doesn’t have to be such a mess as it
often turns out to be. It heavily depends on the graphichal package you choose, as
a well structured starting point can save you from many grey hairs. In the Java en-
vironment there isn’t much of a choice: either you use the standard AWT-package1

which is rather primitive, or you use the more recently developed JFC Swing pack-
age2. We’ve choosen to work with the JFC Swing package, even though it’s not a
stable version yet, as it is comparably well designed. It also solves the problem of
keeping the design platform independent, as graphical components (buttons etc.)
are drawn by the package, not delivered by the operating system.

1Abstract Window Toolkit is a standard part of the Java Development Kit
2Swing is part of the Java Foundation Classes which is a standard extension of Java

45

46 CHAPTER 6. CONZILLA

We’ve choosen to divide the Conzilla browser into several parts, or better, mod-
ules. These modules should be as independent of each other as possible. Visually
they often occupy a certain area of the screen. A module can invoke actions on
other modules by a well defined set of functions (what we call an interface3). A
superstructure is responsible for all the modules, something that includes creation,
layout and communication. The superstructure is simply called the Browser.

We’ve implemented two modules so far: the ConceptMapBrowser and the As-
pectDisplayer. A third module is ready for implementation, the ContentDisplayer.
Even though the names of the modules are choosen to be intuitive, let’s have a short
description of each one of these three and where they are located in Figure 6.1

6.2.1 Introducing the ConceptMapBrowser

This module is the core of the Conzilla browser and therefore occupies the largest
part. In Figure 6.1 the ConceptMapBrowser shows a concept-map, which is actu-
ally the same concept-map about a bicycle as discussed in Section 2.1.

On top of the concept-map three tabs are visible. These correspond to the map-
set component.

6.2.2 Introducing the AspectDisplayer

The AspectDisplayer module to the right of the ConceptMapBrowser contains two
areas of buttons: a list and on the bottom a toolbar. The buttons inside these ar-
eas are defined by the aspect-set component, hence, when a new concept-map is
loaded the buttons will change or reappear. The button ’show’ at the bottom is the
connection to the ContentDisplayer.

6.2.3 Introducing the ContentDisplayer

At present the ContentDisplayer module is simply a Netscape frame. See the dis-
cussion in Section 3.4.1. To make it a real module we just need to wrap it so that
it can be replaced by something else than a Netscape window for some types of
content.

6.2.4 The responsibility of the Browser

Since the modules have well defined interfaces, it is possible to lift out some func-
tionality from them. This functionality is placed in the Browser. Right now it

3This exactly corresponds to the Java programing concept named interface

6.2. THE GRAPHICAL USER INTERFACE 47

Figure 6.1: A snapshot of the browser (running inside Netscape) displaying content
in a separate window. The sample content displaying a bicycle and it’s parts is
found on http://www-lexikon.nada.kth.se/skolverket/bilder/teman/tema18.JPG and
belongs to the swedish-english online dictonary provided by the swedish national
school-organization, Skolverket. It is copyrighted Lidman Information.

48 CHAPTER 6. CONZILLA

handles the meta-data window and the status bar, as well as some buttons control-
ling the ConceptMapBrowser module.

The meta-data window is placed below the ConceptMapBrowser. Here all
forms of meta-data are displayed. Since all components have meta-data there is
a lot of different information that can be diplayed here. The first row is automati-
cally generated and indicates whose meta-data is displayed.

6.3 The browser superstructure

As mentioned above Conzilla consists of three modules communicating with each
other through a superstructure. The advantage of this is that each module can be
exchanged. That is, you can write a new AspectDisplayer without even touching
the implementation of the ConceptMapBrowser.

To make this possible, you need a toplevel object, handling the different parts
of the browser. This toplevel is provided by the browser class, which is a class
with primitives for setting, getting and creating4 the modules. Whenever the Con-
ceptMapBrowser needs to impose an action on AspectDisplayer it does so by ask-
ing the browser class for a reference to AspectDisplayer and then calls it directly.

The Browser is written as an applet, which means that it can be run within web
browsers over the Internet. This doesn’t prevent it from being used as a standalone
application, but then the ContentDisplayer will have to exist or Conzillawill be
crippled.

6.4 The ConceptMapBrowser module

The interface defines the functionality demanded for every ConceptMapBrowser
we construct. The functionality is of three different types: the first is concerned
with how to browse through concept-maps, the second with how to work with
history listeners and the third with how to access internal states.

6.4.1 Browsing concept-maps

The interface defines the following four functions:

jump to a specified arbitrary concept-map. This automatically displays the new
map-set found in the new concept-map. If the new concept-map can’t be
found, an error messaage is displayed, otherwise a ’JUMP’ history event is
triggered.

4In terms of design patterns, it’s an abstract factory (see [8])

6.4. THE CONCEPTMAPBROWSER MODULE 49

zoomIn on a specified concept in the current concept-map gives a new concept-
map with corresponding map-set, just like a jump. If the concept-map is not
found, an error message is displayed, otherwise a ’ZOOMIN’ history event
is triggered.

zoomOut is not implemented yet, but it is intended to take place on a concept-map
level. Triggers a ZOOMOUT history event.

refresh is just a visual refresh which happens when stuff for some reason gets out
of date and needs a repaint. This wouldn’t be needed if there were no bugs
in the Swing package.

6.4.2 History listeners

The browsing process emits a lot of history events, which can be intercepted by
history listeners. The interesting functions are:

addHistoryListener just adds a HistoryListener.

removeHistoryListener removes a HistoryListener if it exists.

fireHistoryEvent emits a specified HistoryEvent to all Listeners.

6.4.3 Accessing internal state

The browser has a current concept-map and map-set, which are changed by the
browsing procedure. Another module of the Conzilla Browser (typically an editor)
could be interested in getting hold of what is currently displayed. Right now the
following functions exist:

getCurrentConceptMap returns the current concept-map.

getCurrentMapSet returns the current map-set.

It’s possible that further functionality should be demanded from a concept-map
browser and therefore here be accessible via functions. Typically this could be
a set of maps specific for the application and/or the user. This would work like
a second map-set which, in contrast to the first map-set, would not change when
browsing.

50 CHAPTER 6. CONZILLA

6.5 The AspectDisplayer

Here we also have an interface describing the basic functionality. The filtering
procedure is rather complicated and needs a thorough understanding of a concept’s
aspects (see Section 2.3.1 and 3.2.5).

setAspectSet initalizes the AspectDisplayer from an aspect-set component. This
means constructing the right button representing aspect and presentation
types.

showAspects loads in the aspects from a concept. They are displayed in a list
according to the filtering by aspect and presentation types.

setFilter sets aspect and presentation type filter and updates which contentdescrip-
tions that matches this filter. If no aspect or presentation type is given, the
show-all option is choosen.

setSelected selects one of several possible contentdescriptions. Note that the se-
lection is performed from a given list and defined to be unique, i.e., two
entries can’t be selected at once.

isAutomaticShowContent returns true or false depending on whether the Con-
tentDisplayer is automatically updated whenever a new selection is done.
Default is false.

setAutomaticShowContent sets the isAutomaticShowContent option.

showSelected shows the content belonging to the currently selected contentde-
scription. If the selection is empty nothing happens.

6.6 Remote control

Let us investigate a use case: a knowledge patch with information concerning the
famous Swedish writer August Strindberg. A book is probably represented by
a concept, and this concept can probaly be seen in several concept-maps. One
possible form of content of such a concept could be the book in digital format.

Let us suppose that in this book we have several phenomena that can be asso-
ciated to other books or other resources, such as commentaries. Such a resource
can be seen in another concept-map and constitutes in itself the content of some
concept. When we browse using regular hyperlinks to such a resource in the
diplayed text (all in the ContentDisplayer) it would be rather natural to have the

6.7. PLATFORM AND SECURITY CONSIDERATIONS 51

ConceptMapBrowser change to the relevant concept-map automatically or when
you press a ’focus’ or ’synchronize’ button.

This is actually possible since both ConceptMapBrowser and AspectDisplayer
can be externally controlled via the functionality presented above. Some simple
JavaScript code inside an HTML-page can invoke actions on our applet if it can
only reach it. So remote controlling is possible whenever you can find your remote.

This of course raises many possibilites, that cannot be discussed here.

6.7 Platform and security considerations

What has been described in this chapter gives an impressive picture of the possibil-
ities of using a Java application from inside of a browser. This Section will show
another side of the story by briefly explaining some of the problems we have had
with this solution.

6.7.1 Java and security

As our application runs as an applet inside the browser, it is subject to applet secu-
rity restrictions. These involve5 :

In general, applets loaded over the net are prevented from reading and
writing files on the client file system, and from making network con-
nections except to the originating host.

In addition, applets loaded over the net are prevented from starting
other programs on the client.

This means that our browser is not allowed to fetch components from anywhere on
the Internet, only from the host where the applet is located. In addition, an editor
used inside the browser would not be able to store the XML documents on the local
harddisk. There are several imaginable solutions to this problem:

1. Implement a proxy on the host where the applet is located, that can fetch
components that the applet asks for.

2. Let the user run the applet from the local harddisk. Applets loaded this way
are usually seen as trusted, and have no security restrictions.

None of these solutions are really satisfactory. The first will decrease speed and
place a possibly heavy load on the server, while the second will mean a lot of hazzle
for the user. We wanted to avoid that, and let the applet do the work all by itself.

5taken from [7]

52 CHAPTER 6. CONZILLA

The two browsers of interest both have their own solutions to this problem.
Both depend on the idea of digitally signing applets, and letting the user grant the
applet privileges based on this signature.

Microsoft Internet Explorer uses a solution where the applet must be stored in
a CAB archive and signed. This solution is totally tied to the Windows platform,
and has therefore been avoided.

The Netscape browser uses a solution where the applet is stored in a JAR file
and signed. The applet may then ask the user to grant it additional privileges.
This is the solution we have used. Fortunately, it is possible to use this solution in
parallel to a Microsoft solution, as the impact on the code is minimal. This will
possibly be done in the future.

Hopefully, as browsers start to support Java 1.2, they will also start to support
the 1.2 security model, which is also based on the idea of signing. Then we will
have a less platform-dependent solution. But that time is not yet here.

6.7.2 Java and Swing

As described in Section 6.2, we have used Swing to construct the GUI. Sadly, this
limits us to newer versions of the Netscape browser (exact version depending on
the platform, but 4.5 should work) that include version 1.1.5 or later of the Java
Development Kit.

So, our solution is not as platform independent as it might seem. We have hopes
that future browsers will support the Open Java Integration API, which allows the
Java virtual machine to be separated from the browser. Then it will probably be
much easier for everyone to get hold of a compatible Java implementation.

6.8 Future

The Conzilla user interface is just a prototype, and has not been been reviewed by
either graphical designers or by real users. This means that our focus here is largely
the technical design. Here are some possible changes:

Small design details such as changing buttons, styles, centering text etc.

Increase the modularisation. Here is a list of a number of suggestions of new
modules. Some of these will be looked upon as basic modules and will be
demanded as standard.

– Add the module ContentDisplayer to the superstructure. As mentioned
above, it’s planned for but not implemented yet.

6.8. FUTURE 53

– Add an editor module. See Section 7.2 for a discussion.

– Add a HistoryListener module.

– Add tools as a module. Tools could be a better interface to much of the
functionality, and new modules should be able to add their own tools.

– Add preferences as a module. New modules should also be able to add
their own preferences configuration.

Remove some functionality of the superstructure so that it only controls the
layout and organization of the modules. The creation of new modules, i.e.,
the factory, has to be done somewhere else. A factory module is of course
the solution. For instance, suppose you want to build a new application with
a different HistoryListener. Then you will only have to build a new factory
and override some layout functions in the superstructure and everything will
work together as planned.

With growing stability of metadata we would like to add functionality for
choosing between contentdescriptions using such data. In the present implemen-
tation the aspectdisplayer filters out a couple of contentdescriptions and then auto-
matically selects the first. This list isn’t sorted so it is an arbitrary choice.

Instead it would be nice if the selection was done by some smart algorithm
taking as arguments the users personality, the current learning objective etc. This
could be done by a decisionmaker where you put in the options, some hints and ask
for a decision. The hard part will be to implement an algorithm that is relevant in
all situations. Therefore, as you probably guess, we want it to be a module which
then of cource can be easily replaced depending on the browsing situation.

Moreover, it could be interesting to use the decisionmaker to choose between
concept or other components as well, but this would happen in another sort of
browsing, for instance when performing searching (see Section 7.7).

54 CHAPTER 6. CONZILLA

Chapter 7

Future Extensions

We have already described some of the directions along which this work will de-
velop in the future. The discussion has been limited to adjusting and enhancing the
existing functionality, but now we turn instead to a number of future extensions of
this project that are large projects in themselves.

These extensions are ideas that have grown out of the design work and research
we have done, and that have influenced the final design in subtle ways. Therefore
we find it important to discuss them here. They are not listed in order of impor-
tance.

7.1 User interface design

As has been described in this thesis, there is a lot of functionality hidden in the
concept representation. It is an interesting problem to try to present all relevant
functionality to the user. Our prototype described in Chapter 6 presents much
functionality, but being a prototype it is not perfect from a usability perspective.
Once this prototype exists, however, it is feasible to involve graphic designers and
real users in the design of the browser.

Usability is extremely important, as the whole idea behind the project is to
design an environment sufficiently friendly to have a pedagogical advantage over
traditional learning. Therefore the technology must be advanced enough to be
transparent. Achieving this goal requires sophisticated user interface design.

7.2 Editor

One of the more important future projects is to design a concept and concept-
map editor. The purpose of an editor is to create new and edit existing concepts

55

56 CHAPTER 7. FUTURE EXTENSIONS

and concept-maps. It would probably use XML for storage, and it is therefore
important that the design of the XML representation stabilizes a bit before that
project is started.

As noted in Section 5.5, the current version of the class library does not imple-
ment any functionality for editing concept-maps. This is the first part of construct-
ing an editor.

The second step would be to create the editor. One of the more intriguing
possibilities we have examined is to integrate the editor in the browser. Besides
reusing code and user interfaces, this would open up completely new possibilities.
It would allow the user that browses ready-made concept-maps to construct per-
sonal concept-maps explaining in subjective ways the material under study. These
personal maps can be shared with friends or be used as part of a course. Some of
these possibilities are already under consideration for other projects at CID.

In short, the editor is an important and interesting project.

7.3 Dynamic concept-maps

One interesting area that has been discussed is different ways of making concept-
maps more interactive. There are several ways in which this may be possible:

allow the user to move certain concepts inside the map, to increase readbility

allow the user to hide parts of the concept-map temporariliy

These possibilities becomes much more important if we allow the user to view
automatically generated concept-maps, such as the result of finding all instances
of a certain concept (see Section 7.7), and showing the result as a concept-map, or
even included in the current concept-map.

7.4 CORBA

As described in Section 5.4, the Concept package contains interfaces for the
concept representation, which are implemented using XML loading of concepts.
One interesting project would be to examine the possibility to implement concepts
in CORBA. What would this mean?

CORBA is a standard for distributing objects and allowing them to work to-
gether in an application. This fits our situation very well. Our components are
nothing less than distributed objects. But with the current implementation, the
objects need to be downloaded in XML format and used entirely locally. With

7.5. THE IMS PROJECT 57

CORBA we would never need to download the component. Instead we would
execute the component’s methods directly on the component where it is located.

Introducing this feature would probably result in a redesign of important parts
of the Java API. Hopefully it would not affect the browser at all.

7.5 The IMS Project

The IMS project is an organization for setting technical standards within the world
of Internet-based learning resources. This includes standards for meta-data, user
profiles, integration with enterprise systems and much more.

This raises interesting possibilities for concept browsing. As the IMS project
has not yet produced many of the important standards that they intend to, it is
difficult to say exactly what needs to be done in this matter.

However, it is clear that it will be important that the browser fits into a future
IMS environment. This includes communicating with other tools, messaging, using
user profiles, course management (see Section 7.6) and much more. Therefore,
examining the possibilities of IMS conformance and integrating the browser with
the IMS environment will be a highly interesting project in the not so distant future.

We have already started adjusting to IMS standards. All our components are
intended to conform to the IMS Metadata standard, as described in [19], which was
released during the course of this thesis work. This is not enforced at this point,
but our intention is full compliance.

7.6 Courses

The browser is not intended to be used for planlessly browsing concept-maps. The
intention is to build a course framework upon the concept-map design. The idea,
as described in [12],[13] and [14] is to separate the following roles in a learning
environment:

1. The Knowledge Patch designer that constructs a Knowledge Patch with concept-
maps, concepts and content, intended to be used in many different contexts

2. The course designer, that essentially constructs a path through a number of
concept-maps,

3. The teacher, assisting the student, answering questions etc.

4. The student

58 CHAPTER 7. FUTURE EXTENSIONS

What we have designed is essentially the basics of the first item. Designing
a way to construct courses through our material is a very important project that
can actually be started at any time, as the basic design of the Knowledge Patches is
finished. Just as concept-maps can be based on UML activity diagrams; which state
the necessary sequential requirements between the different parts of the cource.
This technique for modeling courses has been introduced in [14]

Such a cource-modeling project probably would need to investigate some of
the connections to the IMS project, as described in Section 7.5.

7.7 Searching

When browsing concept-maps, it can happen from time to time that one wants to
find all concepts that relate to a certain given concept. For example, it could be
interesting to find all specializations of the concept “vehicle” in order to examine
which types of vehicles there are. These concepts could then be displayed in an
automatically generated concept-map. Or perhaps you want to find all instances of
the “Author” concept. One intriguing possibility is to allow concepts and associa-
tions to act as filters for this search, so that one can use the concept “Swedish” to
look for Swedish authors. This must be examined in more detail.

Another scenario could be that one wants to search for concepts based on their
meta-data. All in all, searching for concepts is an essential part of a complete con-
cept browser. Searching is however complicated by the fact that it needs nontrivial
support from the Knowledge Patch server. Everything we have designed so far
only involves finding files, which can be implemented on the server side using a
simple web server. Searching involves generating documents based on the request,
and therefore is much more complicated.

Another aspect of searching is locating components. The simple system we
have implemented uses static URL paths for locating and retrieving components.
In the future, one would probably want to ask a directory server where to find a
component. This would be even more interesting if a CORBA solution is imple-
mented, as one could then search for a component and then choose between several
ways to retrieve it, either as an XML document or via CORBA.

In short, searching for components needs to implemented somehow. This
would include standardizing the server side of concept browsing. Probably sev-
eral protocols will exist in parallel, but some form of overall design is necessary.
And most of all, as the searching phenomenon has not been thoroughly investi-
gated, there is a need for a prototype to experiment with. This is also a project
ready to start at any time.

7.8. JAVABEANS 59

7.8 JavaBeans

There has also been some discussions of simplifying the work for the Knowledge
Patch designer and for the course designer by making the whole Java implementa-
tion JavaBeans compatible (see [10]). This would mean that it would be possible to
reuse the different Java objects in new environments such as a highly sophisticated
Knowledge Patch construction environment, which the editor discussed in Section
7.2 probably will never be and was not intended to be.

As this seems to be farther into the future, the details of such a project are still
vague at this point.

7.9 Conclusion

The above extensions are all goals that have emerged during the course of our work.
It has become more and more obvious that an existing prototype to play with is an
irreplaceable source of inspiration. Many of the ideas in this chapter would not
have existed without our implementation. Therefore, we believe that these projects
extending our work will bring equally intriguing insights into what can be done
with this kind of learning environment, and that constructing prototypes are of
fundamental importance, even if they do not survive.

We do hope that this upward spiral will continue.

60 CHAPTER 7. FUTURE EXTENSIONS

Appendix A

Glossary

A.1 Special terms

These are some of the terms used in this paper in a sometimes non-intuitive way.

aspect A way to describe a concept. We make a distinction between what we want
to present and how to present it. We might want to present historical aspects
of the concept or how to use the concept, and any of those can be presented
visually (e.g. a picture) or via a verbal description, etc.

association A connection between two concepts. It has two ends, and sometimes
a direction. Three types are predefined, but new types can be defined locally.
It has meta-data and aspects, so that it acts in many ways just like a concept.

component An independent part of a concept-map. Every component has a unique
identifier that is used to locate it. Aspect-sets, map-sets, concepts, content-
descriptions and concept-maps are all components.

concept In everyday life, concept is used to denote anything that can be the object
of a thought process. For us, a concept has associations to other concepts,
meta-data to describe what it is and descriptions or presentations in the form
of aspects.

concept-map To simplify the visualization of Concepts and their associations,
we’ve created the conceptmap component for a two dimensional layout.

content A concept is a representation of a mental object. Further on this concept
needs an explanation and the actual explanation is an instance of type con-
tent. This could typically be a document, a video, sound or something else

61

62 APPENDIX A. GLOSSARY

that has learning potential and which is possible to give a reference to. We
are at the moment limited to URLs though.

meta-data This is a group of data each with a describing tag, typically it indi-
cates who, when, why, a short description etc. It will be used for searching,
classifying, marking ownership etc.

map-set This is a component that collects a set of conceptmaps. It’s meant to
group together alternative layouts, related explanations, parts of something
too big to display on one conceptmap or just conceptmaps that someone
decided belong together.

A.2 Abbreviations

API (Application Programming Interface) – a set of classes and functions for per-
forming a certain task, while hiding the underlying details.

AWT (Abstract Windowing Toolkit) – Java GUI components implemented using
platform-specific code, providing functionality common to all platforms.

CID (Centre for user-oriented IT design) – an inter-diciplinary competence centre
at KTH. Activities include a three-part collaboration between IT-industry,
user organizations and university researchers. For more information, see
http://www.nada.kth.se/cid.

CAB (Cabinet Format) a compressed file format developed by Microsoft and used
in many of their applications. Internet Explorer, for example, can use CAB
to download large Java applets from the Internet.

CORBA (Common Object Request Broker Architecture) – an open distributed ob-
ject computing infrastructure being standardized by the OMG. CORBA auto-
mates many common network programming tasks such as object registration,
location, and activation etc. See the OMG home page at http://www.omg.org.

DOM (Document Object Model) – from the DOM spec [2]: “a platform- and
language-neutral interface that allows programs and scripts to dynamically
access and update the content, structure and style of documents.” Also, “the
goal of the DOM specification is to define a programmatic interface for XML
and HTML”.

DTD (Document Type Definition) – a text file that defines the allowed elements
of a markup language such as HTML or XML-based markup languages.

A.2. ABBREVIATIONS 63

FTP (File Transfer Protocol) – a very common method of transferring one or more
files from one computer to another

GUI (Graphical User Interface) – the interface to an application that the user sees,
and which uses graphical elements such as buttons and menus for interaction.

HTML (HyperText Markup Language) – a language used to describe WWW pages
so that font size and color, hypertext links, nice backgrounds, graphics, and
positioning can be specified and maintained.

HTTP (HyperText Transfer Protocol) – the underlying system whereby Web doc-
uments are transferred over the Internet.

IMS (Instructional Management Systems) – a global coalition of academic, com-
mercial and government organizations, working together to define the In-
ternet architecture for learning. IMS abbreviates Instructional Management
Systems, which they have noted raises more questions than answers. So they
prefer to be called just IMS. For more information, see http://www.imsproject.org.

JAR (Java Archive) – a compressed bundle of Java classes, similar to ZIP files. It
is used to distribute Java applications and their related files.

JFC (Java Foundation Classes) – a set of Java GUI components extending the
original AWT. The most important part is called Swing.

LDAP (Lightweight Directory Access Protocol) – a simple protocol that allows
you to access and search all forms of directories, containing information
such as names, phone numbers, and addresses, over the Internet.

MOF (Meta Object Facility) – as described in the MOF Spec [16]:

The main purpose of the OMG MOF is to provide a set of CORBA
interfaces that can be used to define and manipulate a set of in-
teroperable metamodels. The MOF is a key building block in the
construction of CORBA-based distributed development environ-
ments.

OJI (Open Java Integration) – an API that allows a Web browser to use any Java
Virtual Machine installed on the local harddisk instead of a built-in Virtual
Machine.

OMG (Object Management Group) – as described on the OMG home page (http://www.omg.org),
an organization that was formed

64 APPENDIX A. GLOSSARY

to create a component-based software marketplace by hastening
the introduction of standardized object software. The organiza-
tion’s charter includes the establishment of industry guidelines
and detailed object management specifications to provide a com-
mon framework for application development.

OMT (Object Modeling Technique) – the predecessor of UML.

SGML (Standard Generalized Markup Language) – a standard for describing markup
languages. Used to define both XML and HTML.

UML (Unified Modeling Language) – a language for specifying, visualizing, con-
structing, and documenting the artifacts of software systems, as well as for
business modeling and other non-software systems. It has been developed
by the OMG. See [4].

URI (Uniform Resource Identifier) – as described in [3], a URI is “a compact
string of characters for identifying an abstract or physical resource.”

URL (Uniform Resource Locator) – as described in [3], the term URL refers to
“the subset of URI that identify resources via a representation of their pri-
mary access mechanism (e.g., their network “location”), rather than identi-
fying the resource by name or by some other attribute(s) of that resource”

UXF (UML Exchange Format) – a set of XML DTDs that describe UML dia-
grams. See [18].

W3C (The World Wide Web Consortium) – as described on the W3C home page
(http://www.w3.org), the W3C was founded to “lead the World Wide Web to
its full potential by developing common protocols that promote its evolution
and ensure its interoperability.”

XMI (XML Metadata Interchange) – a serialization of a UML metamodel de-
scribed using the MOF. The serialization is done using XML. See [17].

XML (Extensible Markup Language) – a metalanguage defined by W3C, used
to define specialized markup languages (like HTML) that can be used to
transmit data in a portable way. See [5].

XSL (Extensible Stylesheet Language) – a language defined by the W3C used to
transform XML documents into HTML or some other presentation format,
for display in i.e. a Web browser.

Bibliography

[1] Ælfred XML Parser, http://www.microstar.com/aelfred.html

[2] Apparao V., Byrne S., Champion M., Isaacs S., Jacobs I., Le Hors
A., Nicol G., Robie J., Sutor R., Wilson C., Wood L., Document Ob-
ject Model (DOM) Level 1 Specification (REC-DOM-Level-1-19981001),
http://www.w3.org/TR/REC-DOM-Level-1/.

[3] Berners-Lee T., Fielding R., Masinter L., Uniform Resource Identifiers (URI)
(RFC 2396).

[4] Booch, G., Jacobson, I., Rumbaugh, J., The Unified Modeling Language – A
Reference Manual, Addison Wesley Longman Inc., 1999.

[5] Bray T., Paoli J., Sperberg-McQueen C. M., Extensible
Markup Language (XML) 1.0 Specification (REC-xml-19980210),
http://www.w3.org/TR/1998/REC-xml-19980210.

[6] Freed N., Borenstein N., Multipurpose Internet Mail Extensions (MIME) Part
One (RFC 2045).

[7] Frequently Asked Questions - Java Security, http://java.sun.com/sfaq/.

[8] Gamma E., Helm R., Johnson R., Vlissides J.,Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley Professional Comput-
ing 1995

[9] Gosling J., Joy B., L. Guy, Steele Jr., The Java Language Specification (ISBN:
0201634511), Addison-Wesley Pub Co, 1996.

[10] Hamilton G. (editor), JavaBeans API Specification (version 1.01),
http://java.sun.com/beans/docs/spec.html.

65

66 BIBLIOGRAPHY

[11] Linde, R., Naeve, A., Olausson, K, Skantz, K, Westerlund, B., Winberg, F.,
K, Kunskapens T d, Centre for user-oriented IT-Design (CID-

18), TRITA-NA-D9708, KTH, Stockholm, Sweden, 1997.

[12] Naeve, A., The Garden of Knowledge as a Knowledge Manifold – A Con-
ceptual Framework for Computer Supported Subjective Education, Centre
for user-oriented IT-Design (CID-17), TRITA-NA-D9708, KTH, Stockholm,
Sweden, 1997.

[13] Naeve, A., Den IT-baserade Utbildningsevolutionen KTH - a tidigare
och a projekt, Centre for user-oriented IT-Design (CID-51),
TRITA-NA-D9909, KTH, Stockholm, Sweden, 1999.

[14] Naeve, A., Conceptual Navigation and Multiple Scale Narration in a Knowl-
edge Manifold, Centre for user-oriented IT-Design (CID-52), TRITA-NA-
D9910, KTH, Stockholm, Sweden, 1999.

[15] The Object Management Group, CORBAServices: Common Object Services
Specification (formal/98-12-09), http://www.omg.org/library/csindx.html.

[16] The Object Management Group, Meta Object Facility (MOF) Specification
(ad/97-08-14), http://www.omg.org.

[17] The Object Management Group, XML Metadata Interchange (XMI) (ad/98-
10-05), http://www.omg.org.

[18] Suzuki J., Yamamoto Y., Making UML models exchange-
able over the Internet with XML: UXF approach, 1998,
http://www.yy.cs.keio.ac.jp/˜suzuki/project/uxf/.

[19] Wason, Thomas D., IMS Meta-Data (draft),
http://www.imsproject.org/work_public/meta-data_did188.html.

