

Master´s Thesis in Computer Science at Stockholm University, Sweden 2006

Serverside Solution for Conceptual
Browsing on the Semantic Web

Fredrik Enoksson

Serverside Solution for Conceptual
Browsing on the Semantic Web

Fredrik Enoksson

Master´s Thesis in Computer Science (20 credits)
Single Subject Courses
Stockholm University year 2006
Supervisor at Nada was Ambjörn Naeve
Examiner was Yngve Sundblad

TRITA-CSC-E 2006:040
ISRN-KTH/CSC/E--06/040--SE
ISSN-1653-5715

Department of Numerical Analysis and Computer Science
Royal Institute of Technology
SE-100 44 Stockholm, Sweden

Abstract

Serverside Solution for Conceptual
Browsing on the Semantic Web

This Master’s thesis discusses how a server could provide information for a
thin client Concept Browser, implemented for example on a mobile phone
or as a Java Applet in a web browser. The core idea of a Concept Browser
is to visualize structured information in the form of context-maps. When
storing context-maps the language for the Semantic Web, RDF (Resource
Description Framework), is utilized. For a thin client Concept Browser to be
able to painlessly display a context-map, it is crucial to minimize the strain
of loading and processing it. Hence, it is necessary to avoid the verbose
RDF expression in XML as well as minimizing the information that is sent.
The server side solution introduced in this thesis solves this by filtering out
the information that is strictly necessary for a given context-map and then
sends this information to the client over a specially designed protocol. This
thesis will go through the requirements, design and implementation of the
server as well as introduce a first version of the protocol.

Sammanfattning

Begreppsbrowser för den semantiska webben,
en serverlösning

Denna rapport diskuterar hur en server kan tillhandah̊alla information för
en begreppsbrowser som körs som en tunn klient, till exempel p̊a en mo-
biltelefon eller en Java-applet i en webbrowser. Syftet med en begrepps-
browser är att visualisera information som kontext-kartor. När dessa kartor
lagras s̊a används beskrivnigs-spr̊aket för den semantiska webben, som kal-
las RDF (Resource Description Framework). För den begreppsbrowser som
körs som en tunn klient ska kunna visa kontext-kartor utan problem s̊a är
det avgörande att undvika den datamängd som m̊aste behandlas och över-
föras. Det är s̊aledes nödvändigt att undvika den detaljerade och utförliga
uttrycken i RDF, som serialiseras i XML samt minimera den information som
sänds. Lösningen med en server som presenteras i denna rapport filtrerar
ut den information som är absolut nödvändig för en speciell kontext-karta
och skickar sedan denna information till klienten över ett protokoll desig-
nat för detta syfte. Rapporten g̊ar igenom kraven för servern och designen
och implementationen av denna samt introducerar den första versionen av
protokollet.

Contents

1 Introduction 1
1.1 The problem . 1
1.2 Method . 2
1.3 Report organization . 2
1.4 Definitions . 2
1.5 Abbreviations . 3

2 Conceptual Browsing, a theoretical background 4
2.1 Contextual topology . 4

2.1.1 Different kinds of Contextual Topologies 4
2.2 Principles for a Concept Browser 5

2.2.1 Contextual topology in a Concept Browser 6
2.2.2 Context-maps . 6

2.3 The Concept Browser Conzilla 8

3 Conceptual Browsing on the Semantic Web 9
3.1 RDF, a brief description . 9

3.1.1 RDF Classes and Vocabularies 11
3.1.2 Reification . 12
3.1.3 RDF serialized as XML 12

3.2 Context-maps on the Semantic Web 13
3.2.1 The structure of context-maps 14
3.2.2 Conzilla Vocabulary 15
3.2.3 Locating and loading context-maps 17

4 Protocol for exchanging context-maps 18
4.1 Requirements for a Concept Browser

Lightweight protocol . 18
4.1.1 Is XML suitable? . 19
4.1.2 Is binary suitable? . 19
4.1.3 An intermediate way 20

4.2 Design of requests and responses 20
4.2.1 Map request . 21
4.2.2 Response to a Map request 21
4.2.3 Request of a contextual neighbourhood 23
4.2.4 Response to a contextual neighbourhood request . . . 23
4.2.5 Metadata request . 24
4.2.6 Response to a Metadata request 24
4.2.7 Content request . 25
4.2.8 Response to a Content request 25
4.2.9 Content request of a concept 26
4.2.10 Response to a content request of a concept 26

4.2.11 Error response . 27
4.3 Choice of syntax . 27

5 Proxy server for a Concept Browser 29
5.1 Request handling . 29

5.1.1 The connection between the client and the proxy server 30
5.2 Techniques for harvesting information 30
5.3 Caching techniques . 31
5.4 Extract the necessary information 32

5.4.1 Extracting metadata 32
5.4.2 Extracting a contextual neighbourhood 32
5.4.3 Extracting a context-map 33

5.5 Compose a response and send it 34
5.6 Implementation . 34

5.6.1 External API:s used 34
5.6.2 Connection . 34
5.6.3 Harvesting and storing information 35
5.6.4 Extracting information and create a response 36
5.6.5 Environments . 37

6 Conclusions 38
6.1 The requests . 38
6.2 The protocol . 38
6.3 Harvesting and caching . 38
6.4 Future perspectives . 39

Appendices 41

A Conzilla Vocabulary 41

B EBNF for LCP 43

C Example of a map in LCP 46

1 Introduction

This work is a part of the distributive interactive learning environment being
done at the Knowledge Management Research (KMR)[6] group, Centre of
User oriented IT design (CID), Royal institute of technology (KTH), Stock-
holm.

Supervisors have been Ambjörn Naeve, Matthias Palmer and Mikael Nilsson
and examiner Yngve Sundblad, CID, KTH.

1.1 The problem

At the KMR group an application called a Concept Browser [8] has been
developed under the name Conzilla [9]. It is an application for display-
ing and navigating contexts. Each context is represented in the form of
a context-map, which basically is a set of concepts and concept-relations.
This application was mainly designed as an educational tool, but has proven
useful in other situations as well. The latest version of Conzilla uses RDF
[10], which is the language of the Semantic Web [13].

The initial purpose of this project was to make a version of Conzilla (or
a Concept Browser) for the new mobile phones that have the possibilities to
be programmed with the Java micro edition (J2ME)[4]. With a quick look
at how Conzilla works with the information, it can be concluded that some-
times a lot of unnecessary information is loaded. Since these mobile phones
have a limitation both in memory and bandwidth in connection with other
devices it is necessary to reduce unnecessary information. The idea for a
solution is to gather information to a proxy server first and then sort out
the necessary information that is to be sent to the client.

The project was divided into two parts, one to investigate how the client
could work and the other how the proxy server could work. This thesis
deals with the latter and the goal with the project was to create a proxy
server that could serve the thin client. To make it possible the following
questions need to be answered:

• What could be requested of a proxy server to enable the idea of a
Concept Browser as a thin client?

• What kind of protocol would be needed and how should it be designed?

• For these purposes, how should information from the Semantic Web
be harvested and cached?

1

1.2 Method

To answer these questions it is necessary to understand what a Concept
Browser is and how it represents contexts, concepts and concept-relations.
From this it is possible to know what kind of information that is needed and
how a protocol between the proxy server and the client should be designed.
When this has been understood it is necessary to know how to harvest
information and how to cache information for quick referencing. From this
a design and an implementation could be made for the proxy server that
could serve the thin client.

1.3 Report organization

Chapter 2, Conceptual Browsing, a theoretical background describes the prin-
ciples of a Concept Browser and some necessary definitions closely connected
to it.

Chapter 3, Conceptual Browsing on the Semantic Web describes how the
Concept Browser could work with the Semantic Web and how the context-
maps are described in RDF, which is the language for the Semantic Web.

Chapter 4, Protocol for exchanging context-maps, what kind of information
is sent between the client and server and how it is composed is described in
this chapter.

Chapter 5, Proxy server for a Concept Browser, describes the requirements
for such a server and how the communication between the server and the
client could be handled. This chapter also describes how a prototype for
such a server was designed and implemented.

Chapter 6, Conclusions Summarizes the result and answers the problems
for this project. Future perspectives for the proxy server are also discussed.

1.4 Definitions

The following definitions, taken from [8], are used in this paper:

• Thing = phenomenon or entity.

• Concept = representation of some thing.

• Context = graph containing concepts as nodes and concept-relations
as arcs.

2

• Context-map (or context diagram) = graphic representation of a con-
text.

• Content (component) = information linked to a concept or a concept-
relation.

1.5 Abbreviations

The following abbreviations will be used in this thesis:
CPU Central Processing Unit
CSS Cascading Style Sheet
EBNF Extended Backus-Naur Form
HTTP Hypertext Transfer Protocol
IP Internet Protocol
J2ME Java Micro Edition
MIME Multipurpose Internet Mail Extensions
PDA Personal Digital Assistant
RDF Resource Description Framework
RDFS Resource Description Framework Schema
TCP Transmission Control Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
UML Unified Modelling Language
ULM Unified Language Modelling
XML eXtendable Markup Language

3

2 Conceptual Browsing, a theoretical background

The increased use of information and communication technology has led to
that the amount of information retrievable today is growing very rapidly.
Even though the new technology has made it easier to find and collect in-
formation, it is sometimes hard to find the relevant information, especially
when using the WWW. To understand what context the information is in
can be difficult unless the website is carefully designed. Otherwise the feel-
ing of ’Within what context am I viewing this content and how did I get
here?’ appears, also referred to as the websurfing sickness. Even if the sys-
tem with hyperlinks on the WWW can prevent the websurfing sickness, the
contextual topology for this system leads to some problems, which basically
comes from the fact that the context and the content are not separated. A
Concept Browser is a way of doing this, though a total separation of context
and content is not made. In such a browser every context is displayed as a
context-map, where a concept in that map can refer to content describing
that particular concept. But before Conceptual Browsing is described any
further a definition of contextual topology is needed.

2.1 Contextual topology

A contextual topology describes how concepts and their contexts are treated.
A. Naeve’s definition, taken from [7], is:

Let S be a set of concepts, and let C be a concept in S. A context in S
that contains C is called the contextual neighborhood of C in S. The con-
textual topology on S is the set of all contextual neighborhoods (in S) of
concepts of S. If a concept C has no contextual neighborhood involving
other concepts from S, then C is called an isolated concept in S.

This definition is influenced by the definition of a mathematical topology
and is therefore theoretical. The following examples describe some contex-
tual topologies currently used and their shortcomings.

2.1.1 Different kinds of Contextual Topologies

The contextual topologies used at a certain time in history depends on the
technology of that time. Therefore different kinds of topologies has evolved
from how it was possible and useful to form a structure for the content to be
presented in. One basic way to form such a structure is to create a lexico-
graphical order, like a dictionary. This is a simple way to find information,
but with the disadvantage of not showing any relations between the content
entries of the dictionary. Every entry in the dictionary is an isolated concept
and forms a totally disconnected contextual topology. Encyclopaedias can

4

be viewed as dictionaries, but with the ability to refer to another entry (usu-
ally) in the same encyclopaedia much like a hyperlink system as the WWW,
though in the closed world of an encyclopaedia. A textbook on the other
hand usually makes some kind of classification or taxonomy of the informa-
tion to create a context. A book about vehicles would classify a vehicle into
the subtype motor vehicles and manforce vehicles. Further subtyping could
create the context for the text (content) of the book. The context is built
upon a taxonomic system.

With the Internet another contextual topology has evolved in the form of the
WWW, which is basically a huge set of webpages that can be hyperlinked
to each other. It is in a way a dynamic system, since these hyperlinks could
quite easily be created or removed. A typical webpage is a container for its
content, but it is also a context for the content that can be reached from
the page using hyperlinking. If a typical webpage A has a link to webpage
B, then A forms a context for B. The whole context for B are the webpages
that link to it. B can also be linked to A and then B has formed a context
for A and the relation is reversed. This leads to a complex structure of
context and content, where the context can be hard to grasp. The context
that is formed with the link system usually depends more on catching the at-
tention of the viewer than on showing the conceptual relation of the content.

The topologies described form a relation with the content and context in
an unsatisfying way. In the system with hyperlinks, the context and con-
tent are presented at the same time, which makes it hard for the user to
get an overview of the context. Considering the two other topologies for
books, the dictionary forms a lot of isolated concepts. Even though the
normal textbook that has a taxonomical structure for the context gives you
a good overview, the relationship between the context and the content is
fixed. And so is the overall context for the book. The reuse of content in
another context is not possible after a book has been printed.

2.2 Principles for a Concept Browser

To avoid the discussed shortcomings a contextual topology that is both
dynamic and gives a good overview of a certain context is needed. For that
purpose the Concept Browser was created, where it is possible to navigate
through different kinds of contexts and concepts. The ideas for a Concept
Browser were described in [7] and the following principles were put up in
that paper:

1. Separate the content of a concept or a concept-relation from its con-
texts. This supports the reuse of conceptual content across different
contexts.

5

2. Describe each separate context in terms of a context-map, preferably
expressed in the Unified Language Modelling technique.

3. Allow neighborhood-based contextual navigation on each concept and
concept-relation by enabling the direct switch from its presently dis-
played context into any one of its contextual neighborhoods.

4. Assign an appropriate set of resources as the content components of
each appropriate concept and/or concept-relation.

5. Label each resource (concept, concept-relation, context or content
component) by making use of a standardized data description (=
metadata) scheme.

6. Allow metadata based filtering of the content components through
context-dependent aspect-filters. This enables the presentation of con-
tent in a way that depends on the context.

7. Allow the transformation of a content component, which is also a
context-map, into a context (called contextualization).

8. Support lateral thinking by introducing a concept bookmaker, which
allows concepts as well as contexts to be interactively constructed from
content according to a menu of different content-gathering principles.

In this thesis a Concept Browser is an application that follows these prin-
ciples. In the rest of this text when referring to the principles these are the
principles of a Concept Browser unless stated otherwise. The principles are
discussed more in section 4.1.

2.2.1 Contextual topology in a Concept Browser

Each context is represented as a context-map in a Concept Browser, ac-
cording to principle 2. These maps includes concepts and concept-relations
(which basically is a concept). A certain concept can occur in several maps
and according to the definition those maps form the contextual neighbour-
hood for that concept. This means that the contextual topology in a Concept
Browser is a set of context-maps. A comparison could be made with an at-
las. Each map where Stockholm appears in the atlas can be seen as the
contextual neighbourhood for Stockholm.

2.2.2 Context-maps

It is the context-maps that make Conceptual Browsing possible, because
the Concept Browser enables the user to get an overview of a concept or
a context. They are the most essential part of a Concept Browser and
they enable a separation between context and content since the concepts

6

are assigned sets of descriptional contents (webpage, picture, etc.). In this
way the context-map (and the Concept Browser) builds a layer on top of
the already existing WWW. By forming this context layer a structure is
created for it. A context-map is the graphical representation of a context.

Figure 1: An example of a context-map.

The context is in turn a set of concepts related to each other by concept-
relations. Such a relation is basically another concept which includes the
concepts from the relation and the type of the relation. The context-map
can be seen as a canvas where concepts and concept-relations are drawn.
A concept is represented as a two-dimensional geometric entity (a square,
circle, etc). The concept-relations are represented as lines between two or
more concepts. Both the concepts and the concept-relations can be styled
in different ways, preferably defined in advance. A good example of this is
the class diagrams in UML, where concepts and concepts-relation are styled
in different ways depending on their type. An example of a context-map is
shown in figure 1.

7

2.3 The Concept Browser Conzilla

Conzilla is the first implementation of a Concept Browser. It was developed
by Mikael Nilsson and Matthias Palmer, under the supervision of Ambjörn
Naeve at CID/NADA/KTH. This application is based on the principles of
a Concept Browser. It also has another feature for navigation through the
context-maps. The basic navigation method through the concepts is done
by doing a search of the contextual neighbourhood as described in principle
3. The other way of navigating implemented in Conzilla is by placing a
hyperlink from a concept or concept-relation to a context-map, which is de-
scribed in [9]. This feature could be used to link to any context-map, though
it should be used to link to a map that describes the chosen concept in more
detail. This feature will be considered further in this thesis, mainly because
it is a good way of navigating through the different concepts.

Another useful feature of Conzilla is that it is possible to create and edit
maps through a graphical interface. You are able to manipulate the style
and hyperlinks of the concepts and concept-relations. Though this is a very
powerful feature it will not be considered any further, since this thesis only
deals with presenting maps.

8

3 Conceptual Browsing on the Semantic Web

The context-maps used by a Concept Browser should preferably be repres-
ented in a standardized way according to principle 5. In this thesis the
choice of representation is Resource Description Framework (RDF), since
the maps that existed were represented in that form. RDF is the language
designed for the Semantic Web, which is an initiative from the World Wide
Web Consortium (W3C). The visions of the Semantic Web is described in
[13]. It is a vision of creating interoperability between information systems
by forming a common semantic (understood by machines). There are several
reasons for using RDF, the main one being that the Semantic Web and the
Concept Browser could enhance each other. The following points mark out
the advantages of using them together.

• W3C recommendation RDF is a the new metadata standard for
interoperability between machines recommended by the W3C. Since it
is an open standard the representation could be interpreted by other
applications understanding RDF.

• Conceptual thinking The Semantic Web focuses on describing re-
sources (a subset of those can be thought of as concepts) and relations
between them. That is very similar to what is expressed in a context-
map.

• Extensibility RDF is extendable, and therefore old metadata-descrip-
tions could quite easily be translated into RDF. This way, context-
maps represented in another language could be transformed into RDF
and then used by an application like Conzilla.

3.1 RDF, a brief description

Resource Description Framework (RDF) is a language for describing inform-
ation about Web resources. It is designed to represent information about
things that can be identified on the Web, even if it is not retrievable there.
For a resource to be identified on the WWW it has to have a Uniform Re-
source Identifier (URI).

The main data-model for RDF consists of three object types:

• Resources A resource is something that can be described with RDF.
It is identified by an URI, therefore every resource is unique. Since
(theoretically) everything can have a URI, it can be described by RDF.

• Properties A property is basically a resource, but it is a kind of
resource that is used to describe characteristics, attributes or relations
to other resources.

9

• Statements A resource can have a certain kind of property, and a
value for that property. This is called a statement in RDF and it
consists of three parts, the resource, which is called the subject of the
statement, the property for this resource, called the predicate and the
property value, which is called the object. So, a statement consists
of a triple with a subject, a predicate and an object. The object of
a statement can be another resource, but it can also be a literal, in
other words a String. A statement is sometimes called an RDF-triple.

Every statement in RDF can be visualized as a graph, a resource is an ellipse
(or a circle), the predicate an arrow pointing from the subject to the object.
If the object is a literal it is depicted as a box. What has just been described
is shown in figure 2 and 3.

Subject

Predicate

Object

Figure 2: How a statement is visualized.

Consider a simple example, a webpage that has the URI http://www.example.-
org/ has been created by Bruce Banner. In this case the webpage is the
subject and it has got a property creator with the value Bruce Banner. The
graph in figure 3 shows us the same thing.

To make the following examples a little easier to read, the URI will be abbre-
viated according to the following: ex: is short for http://www.example.org/,
rdf: short for http://www.w3.org/1999/02/22-rdf-syntax-ns# and rdfs: for
http://www.w3.org/2000/01/rdf-schema#. This would mean that http://-
www.example.org/BruceBanner is abbreviated ex:BruceBanner.

Figure 3: RDF-graph stating that http://www.example.org/ was created by Bruce
Banner.

The object in the current example is a literal. Now, to include information
about the creator’s phone number and email address, we have to extend our
description by replacing the literal with a resource. We can now let this

10

resource have the properties email, phone number and name. This is shown
in figure 4. As seen in this last example, a resource can be the object in
one statement and the subject in another. The advantage of doing as in
the last example, is that you have a unique identifier for the object, which
might not be the case in the first example, where we had a literal instead. If
ex:BruceBanner is the creator of another webpage stated in another state-
ment, we know that it is the same person.

1234 566Bruce Banner

bruce@example.org

http://www.example.org

ex:bruceBanner
ex:name

ex:email

ex:createdBy

ex:phoneNumber

Figure 4: Extending the RDF-graph in figure 3.

3.1.1 RDF Classes and Vocabularies

Every resource in RDF can belong to, or be an instance, of one class or more.
To state that a resource is of a certain class it is given the property rdf:type,
with the class as value. The basic class in RDF is rdfs:Class defined in RDF
Schema. With the help of this schema it is possible to form class hierarchies
which have a lot in common with classes in object oriented programming
languages like Java and C++. As a help to construct classes and their
hierarchies RDF Schema provides a vocabulary using RDF for that purpose.
A vocabulary is a set of properties and classes defined for a special purpose or
organisation. RDF Schema is the base vocabulary and it is an extension to
RDF that describes how to define your own vocabulary, by using RDF itself.
This schema is like a type system for RDF which also provides mechanisms
for how to specify your own classes and properties. As an example of RDF
schema a class can be the subclass of another class with the help of the
property rdf:subClassOf . Properties can also form a class hierarchy, that

11

is made with the property rdf:subPropertyOf. That and more about RDF
classes is described in [11] and [10].

3.1.2 Reification

It is sometimes necessary to make statements about statements, for example
who made a certain statement and when it was made. This can be done in
RDF by using reification with the help of the class rdf:Statement and the
three properties rdf:subject, rdf:predicate and rdf:object. An example of a
reification is shown in figure 5 and it corresponds to one of the statements
in figure 4. Through reification it is possible to have a statement both as
the subject or the object of another statement.

http://www.example.org/

ex:createdBy

ex:bruceBanner

rdfs:Statement

ex:exampleStatement

rdf:type

rdf:subject

rdf:predicate

rdf:object

Figure 5: A reification of the statement in figure 4.

3.1.3 RDF serialized as XML

RDF can be serialized in many ways, but the most common way is to use
XML. The XML-serialization for the example in figure 4 would be:

<rdf:Description rdf:about=’http://www.example.org/’>
<ex:createdBy rdf:resource=’http://www.example.org/BruceBanner’>

</rdf:Description>

<rdf:Description rdf:about=’http://www.example.org/BruceBanner’>
<ex:name>Bruce Banner<ex:name>
<ex:email>bruce@example.org<ex:email>
<ex:phoneNumber>1234566<ex:phoneNumber>

</rdf:Description>

12

How RDF is serialized in XML is further described in [12]. The location
where the RDF serialization is stored is called a container and when using
XML a container is usually a file or a database. This means that several
statements in RDF can be kept in the same container and information about
one URI can be kept in different places as well. This causes some problem
which will be discussed more in section 3.2.2 and 5.2.

3.2 Context-maps on the Semantic Web

To display a context in the form of a context-map it needs a graphical
representation. Two cases could be considered, the context-map holds no
information in advance and is styled by the application each time it is loaded
or it could be styled in advance and the graphical information is stored with
the map. Only the second case will be considered in this thesis, since if a
map looks the same in every application it is more easily recognized as the
same map by a user. Algorithms for layout usually works quite poorly and
still use a lot of processing time. It is sometimes useful to enhance certain
structure in a context-map, for example in a UML class diagram it is very
common to place a superclass in a class hierarchy higher then its subclasses.
The disadvantage is that the graphical information makes the maps use more
memory, but taken the other advantages of it makes it better to store the
graphical information. Another reason for this is discussed later on in this
chapter.

For a Concept Browser the necessary information about the context-map
and its concepts can be divided into four types:

• Abstract information The metadata about a concept, concept-relation
or context-map.

• Graphical information If the map is not empty some concepts and
relation between them are drawn on the map. This information de-
scribes how the map is drawn and can be used by an arbitrary applic-
ation to present the map.

• Navigational information An example is the hyperlink to another
map from a concept or concept-relation, as described in section 2.3.
Indirectly the contextual neighbourhood is included here, as described
in principle 3.

• Information about content Every concept or concept-relation can
link to a resource that holds descriptional content about that certain
concept. According to the design principle 4.

The context-maps and all information about them dealt with in this thesis
are constructed in advance and are represented in RDF. Every map, concept

13

and concept-relation has an URI as its identifier. As described in section
3.1.3 this information is stored in containers, which can be a file or data-
base of some kind holding RDF-statements. One container usually contains
information about several URIs, therefore several context-maps can be in-
cluded in one container. A context-map also needs information held by other
URIs, which in turn can be held by another container. This means both that
a container can hold several context-maps and that all information about a
specific map can be distributed over many containers. Another thing is that
a context-map rarely shows all the information in a container. One reason is
that a container can hold a vast amount of information which would create a
big context-map and the advantages of displaying it as a context-map would
be lost. Another reason (closely related) would be that information would
be too detailed and those details might not be relevant in certain situations.

3.2.1 The structure of context-maps

Since not all information in a container should be displayed two layers have
been created. The bottom layer is called the information layer and on top
of that is the presentational layer. The presentational layer is basically the
graphical information of the context-map, but it refers to the content inform-
ation and the information about a detailed map. With that is yet another
layer called the style layer, where concepts and concept-relations could be
styled in different styles according to some predefined scheme. For example
a certain concept could be styled as a box with rounded corners another one
as a circle, a concept-relation might have a dotted line or a special arrow at
the end.

This structure could be compared with the structure of information in a
server with dynamic webpages. The information is usually stored in an
XML-file or a database. This information is glued together with the styling
information to form an html-page and what is called dynamic webpages are
created. On top of that some kind of stylesheet is sometimes included. These
three layers are basically the same with context-maps. The context-map is
referring to information in different containers and on top of that some kind
of styling sheet is provided. All this according to figure 6. Two differences
can be detected here. First, a dynamic webpage is constructed with the in-
formation and styling information mixed together. Second, the information
is (usually) not available without the styling information. When using RDF
everyone can see the information without the layout.

To represent a RDF-statement on the presentational layer every concept
is represented by a concept layout and every relation by a statement lay-
out. A concept layout holds the graphical information and also points to

14

Dynamic
HTML−
page

CSS RCSS

HTML

RDF

Context−map

XML, database

Context−map

Information

Layout

Stylesheet

Figure 6: Comparing the gathering of information for dynamic HTML-pages and
context-maps, however RCSS (RDF-CSS) is still a bit unspecified.

the content information and the link to the detailed map about that concept
and most importantly it points to the concept in the information layer. The
statement layout is built almost the same way, but the statement layout
does not refer directly to the information layer, but to a reification of the
statement which refers to the subject, predicate and object of the statement
on the information layer. This is shown in figure 7. The statement layout
also refers to the concept layout of the concept of the statement. The reason
for this is that otherwise it would not be possible for the same concept to
appear more than once in one map. The statement layout needs to know the
layout of the concept it should be using or the layout could get wrong since
several concept layouts can reference the same concept. For a statement
layout to be correctly constructed the layout of the subject of the statement
(a concept layout) should refer to the same as the subject of the reification
of that statement layout. The same goes for the object and object layout,
like in figure 7.

3.2.2 Conzilla Vocabulary

Within the Conzilla project a certain RDF-vocabulary for Conzilla has been
developed to be able to represent context-maps. The URI http://kmr.-
nada.kth.se/rdf/graphic# is abbreviated CVL: in the following text. For
a resource to be a context-map, the rdf:type has to be CVL:ConceptMap.
All non-empty maps contain concepts and concept-relations, which have the
type CVL:ConceptLayout and CVL:StatementLayout respectively. These
correspond to the concept layout and the statement layout discussed in the
previous section. With the help of the property CVL:displayResource both
the layouts can indicate the URI of the resource it is styling. Parts of the
Conzilla vocabulary is included in Appendix A.

15

Supervisor Of

ex:bruceBanner

Bruce−Layout

supervisor layout

Clark−Layout

supervisor−reification

ex:clarkKent

ex:clarkKent

ex:bruceBanner

dc:title dc:title

rdf:objectrdf:predicaterdf:subject

Bruce Banner Clark Kent

Clark KentBruce Banner
Supervisor Of

CVL:displayResource

CVL:SubjectLayout

CVL:ObjectLayout

CVL:displayResource

CVL:displayResource

dc:title

Presentation Layer

Resulting Display

Information Layerex:supervisorOf

ex:supervisorOf

ex:supervisorOf

Figure 7: The layout parts refer to the information layer, the top part shows one
way to display it.

One way of navigating through the contexts-maps is to do a contextual
neighbourhood surf, as described earlier. Since only parts of the containers
are displayed in a context-map the contextual neighborhood for a concept
are the maps where a certain concept is displayed. A concept is identified by
its URI and it is possible to find the contextual neighborhood of the concept
only if it is displayed in a context-map. Also included in the Conzilla Vocab-

16

ulary are properties and Classes for navigation and location of context-maps.
They all start with the URI http://kmr.nada.kth.se/rdf/navigation#, which
will be abbrieviated CVN:. A styled resource is able to hyperlink to another
context-map. To do this the property CVN:hyperlink is used for a concept
layout or statement layout.

3.2.3 Locating and loading context-maps

Every map has a URI, which refers to other URIs, but the URI does not
necessarily define where the container for that information is located. All
information for a context-map might not even be included in one container.
To be able to find in which container a context-map (or any other resource)
is contained a property named CVN:includeContainer is sometimes included
to indicate where the information is located. Unless any other method is
provided for finding containers this is a good way to find it. Techniques how
to solve this problem are discussed in section 5.2.

17

4 Protocol for exchanging context-maps

The thin client and the proxy server need a predefined way of communicating
the necessary information between them. For a thin client to work as a
Concept Browser there are some types of information that are more essential
than other. This could be deduced from the principles of a Concept Browser.

4.1 Requirements for a Concept Browser
Lightweight protocol

The first principle says that the content should be separated from its context
and principle 2 to express these contexts in the form of a context-map. This
is assumed to already be fulfilled, since all information is created in advance.
The same goes for principle 4, which says to assign content components to
a concept. Principle 5, that says that the concepts should be labelled with
metadata is fulfilled as well and that choice is RDF as said earlier. Principle
6 is too advanced for a thin client and is not considered further. Principle 7
says that a content component could be another context-map. Principle 8,
to enable a concept bookmarker, could be solved by the server. This would
make the server save a lot of information about each and every client ever
accessed it. Hence, it is better to keep those bookmarks on the client side.
Taken this into consideration the principles of a Concept Browser boils down
to 5 types of requests. The client would have the possibilities to request:

• A context-map. Every context is already in the form of a context-
map, but to be able to display it the client should be able to get the
information about them from the server.

• A contextual neighborhood. According to principle 3 it should be able
to look at the contextual neighbourhood of a concept.

• Metadata, principle 5 says that each concept should be labelled with a
standardized metadata description, which is RDF. Therefore it should
be possible to request metadata about different resources. For ex-
ample:

– concept-metadata

– metadata about a content component

• List of content components assigned to a concept. According to prin-
ciple 4 content components could be assigned to a concept. Informa-
tion about these should be able to request.

18

• A content component, if the client have the restriction of an unsigned
Java Applet, to only be able to download things from the server the
applet originated from. In this case it would be necessary to download
the content to the proxy server first and then to the client. So request-
ing content should (to some extent) be possible. A content component
could be a context-map and then it should be handled as downloading
a context-map.

A protocol was designed for these 5 types of requests. The current working
name for the protocol is Lightweight Concept Browser Protocol, abbrieviated
LCP. It is a text protocol and the goals with the design were to make it:

• Simple and stateless Since this a first version it is good to keep it
simple. Stateless because it is easier to implement such a protocol,
cause one request demands only one response

• Compact From the structure of information discussed earlier and the
limitations of the thin client it is important to reduce unnecessary
information and overhead.

• Extendable when possible Though the protocol is designed to be
extendable in this first version the two first points are more important
in the design. But the design should make extensibility when possible
if it does not interfere too much with the other two design goals.

• Not dependent on any vocabulary Since the maps are expressed
in RDF different vocabularies for expressing context-maps can exist.
The protocol for that should not be dependent of a certain vocabulary.

4.1.1 Is XML suitable?

The most common way to serialize RDF is to use the eXtandable Markup
Language (XML). It would be possible to just cut out the important parts
of the XML-serialization or create another XML-serialization and transmit
that. This is of course possible but since XML is very expressive it would
use a lot of bandwidth and probably a lot of memory on the client side.
This could partly be solved by compressing it in some way, but that would
instead require more CPU utilization.

4.1.2 Is binary suitable?

A compact format like a binary representation of the map could be used.
That way a lot of bandwidth could be saved, though it would not be readable
by a human and it would probably be hard to easily extend. A binary version
could possibly use a lot of CPU-time if not carefully designed. Another

19

approach than binary is to rely on smart algorithms in the lower parts of
the network layer to save bandwidth.

4.1.3 An intermediate way

By not using XML parts of the extensibility and flexibility is lost and by not
using a binary format the protocol could end up using a lot of bandwidth.
The proposed protocol uses an intermediate approach. In fact, the protocol
is text based and balances between expressisivity and minimizing overhead
information. That way a compromise between using too much memory,
CPU-time and bandwidth is hopefully achieved.

4.2 Design of requests and responses

When a client requests the proxy server for information it needs to know
what type of information that is requested. This means that each request
should have an identifier for each type of request. Except this identifier
at least one argument is included depending on the request, which will be
discussed in this chapter. The structure for the request is constructed so
that all necessary information for the server to consider is on the first line of
the incoming text and it ends with LCP/ followed by the version number.
After that additional information about the client could be included on new
lines, for example screensize. This is done the same way as in HTTP [3]
and it follows after the first line in the request. This could be included in
every request, though it is up to the server to actually consider them any
further. The request ends with two new lines which states the end of the
request. This and the rest of the design of the request part of the protocol
are influenced by the HTTP-protocol. The requests and response could be
mixed up, for example if a request is sent before the previous request got
its response. There is no way of knowing what response corresponds to
which request. This will be handled by the underlying network protocol like
TCP/IP, where a connection is defined by an address and a port number
on each side of the connection. The design of LCP needs such a underlying
to know what request responds to what response. Since the information of
the client is rather sparse and no login is required the issue of session has
been postponed. Though, by the use of HTTP as an underlying protocol
that would be quite easily achieved through cookies or similar techniques.

Every request from a client should be answered with a corresponding re-
sponse, except if something goes wrong. In that case an error message is
sent instead. To recognize the protocol the response starts with the code-
word LCP/ followed by the version number and the codeword for the request,
which is followed with two new lines. For the client to know when all in-
formation is sent every response and request ends with two new lines. Note

20

that some of the examples in the following chapters could not be fit into one
line. A backslash is used to indicate that the next line in the text should be
a part of the first line.

4.2.1 Map request

Like everything in RDF it is identified by an URI, so the URI of the map
would be the only argument necessary for this request. If it is not provided
the server could choose to either send an error message (as described in
4.2.11) or to send an arbitrary map, perhaps some kind of default map. If
the client knows of the container the map is included in it can be the op-
tional second argument. To identify this request it starts with the codeword
GETMAP, followed by the arguments. Example:

GETMAP http://www.example.org/examplemap/\
http://www.example.org/examplecontainer.rdf LCP/0.1

4.2.2 Response to a Map request

It is assumed that when the client makes a maprequest it wants to display
the map. The information about it is divided into 3 parts, the general in-
formation about the map, information about the concepts and last is the
information about the concept-relations. All these three parts come in the
same order in the protocol and are separated by two new lines. For every part
abstract, graphical, navigational and content information can be included,
which was the important parts of the context-map according to section 3.2.
To separate them each type of information are inside an angle bracket pair.
Example of the structure:

<[Abstract]><[Graphical]><[Navigational]><[Content]>

The general information about the map consists of the abstract and the
graphical information in this version, but if there are following angle bracket
pair it is reserved for the navigational and content information. The abstract
information is the URI and title of the map. The graphical information is
the height and the width of the map in pixels. Example:

<http://example.org/examplemap;Example map><75,75>

The second part, about the concepts, have an angle bracket pair for all
4 types in the following order:

21

• abstract information is the URI of the concept, a title and a descrip-
tion. Example:

<http://example.org/exampleconcept;Concept example;Example\
of a concept>

• The graphical information is the location of the bounding box where
the concept should be placed on the map, the size of it and the style
of the concept. Example:

<35,35;12,10;rectangle>

• Navigational information is the detailed map and a list of the contex-
tual neighbourhood of the concept. Example:

<http://www.example.org/examplemap2;http://www.example.org/\
map1,http://www.example.org/map2>

• content information is a list with every content assigned to the concept
as its URL and the MIME-type. Example:

<http://www.example.org/pic1.jpg,Image/jpeg;\
http://www.example.org/ex.html, text/html>

If the map does not contains any concept an empty pair of angle brackets
are sent instead.

The concept-relations refer to the concepts by their number in the order
that they are in the protocol and not by their URI. So the order of the
concepts in the protocol sent are important to remember for a client. The
structure of information for the concept-relations are basically the same and
the content and navigational information is structured exactly same way for
the concept-relations as for the concepts. The rest of the information for
the concept-relations are structured in the following way:

• Abstract information is the URI of the reification followed by the URI
of the property. This is followed by the number of the subject concept
and the number of the object concept of the statement. Last is the
title and the description. Example:

<http://www.example.org/exreification;\
http://www.example.org/exProperty;1,2;example-Statement,\
example of a statement>

22

• Graphical information of a concept-relation are the points that the line
is connected through. It is actually just a list of numbers but should
be paired. The first number is the x-coordinate and the second the
y-coordinate and so on. A location and size of a bounding box for the
title follows and then how the line and arrow should be styled. Last
is the direction the arrow, if it should be in a forward or backward
direction to the line. With an f it is indicated that the arrow should
be at the end of the line, which is the last point given in the points for
the line. A b indicates a backward direction. Example:

<6,7,4,5,8,9;11,22,10,10;dotted,fullarrow,f>

If the map does not contains any concept an empty pair of angle brackets
are sent instead. An example of a full map is included in Appendix C.

4.2.3 Request of a contextual neighbourhood

To request a contextual neighbourhood means that all the maps where a
certain concept occurs is requested. So this would again mean that the URI
of the concept would be enough. Usually a contextual neighbourhood is
requested when a concept have been found in a context-map. To exclude
that map in the response, the URI of the map can be added as an argument.
The word for identifying this request is GETNEIGHBORHOOD. Example:

GETNEIGHBORHOOD http://www.example.org/exampleURI/\
http://www.example.org/examplemap/ LCP/0.1

4.2.4 Response to a contextual neighbourhood request

This response should basically consist of the set of maps that make out the
contextual neighbourhood. Depending on the request this set could look a
little bit different. If the request only has the the first argument, the URI
of the concept, the response will be a list of all the context-maps containing
that concept. If the request has a second argument which is the map where
the concept was found, all maps except that map should be returned. That
is actually a punctured set of a contextual neighbourhood that is returned.
The structure of this response starts with the URI of the concept inside an
angle bracket pair, followed by two new lines and then the list of context-
maps follows and one map is on one line and inside an angle bracket pair
with the URI of the map and the title of the map or a short information
about that map. If no contextual neighbourhood can be found an empty
pair of angle brackets are sent instead. Example:

23

LCP/0.1 GETNEIGHBOURHOOD

<http://example.org/exampleURI/>

<http://example.org/mapURIone/;Map one>
<http://example.org/mapURItwo/;Map two>
<http://example.org/mapURIthree/;Map three>

When requesting a context-map the contextual neighbourhood is included
for every concept and concept-relation. That would mean that a contextual
neighbourhood would not have to be a possible request, since it is already
provided. The reason for still having it is that a concept might be found
somewhere else than inside a context-map. With this request it is pos-
sible to get the contextual neighbourhood of an arbitrary concept. Another
reason that could happen was that the whole contextual neighbourhood for
a concept is not provided in the context-map response to save bandwidth.
Then this request would be a complement to the maprequest.

4.2.5 Metadata request

The only argument would here as well be the URI for the concept the client
would like metadata about. But all information about one resource could
be quite extensive to make use of, so there are two ways to reduce the
metadata information loaded. One is to list all the properties of interest for
that concept, or to only include the metadata that is included in a certain
RDF-vocabulary. The code word GETMETADATA is used as identifier and
below is an example with the list of properties as the second argument. The
entries in this list are separated by a comma. Example:

GETMETADATA http://www.example.org/exampleURI/ \
http://www.example.org/title/, \
http://www.example.org/description/ LCP/0.1

4.2.6 Response to a Metadata request

The request of metadata could be done in several ways, but the structure of
the response is the same. When requesting metadata it is basically a request
of which statements have this concept as the subject. The structure starts
with the URI of the concept followed by two new lines and then the rest of
the statement follows each on every line and every entry is inside an angle
bracket pair. The object is sometimes a string literal and sometimes a URI.
Example:

24

LCP/0.1 GETMETADATA

<http://example.org/exampleURI>

<http://example.org/exPredicate1/;http://example.org/\
exampleObject/>
<http://example.org/exPredicate2/;Example string 1>
<http://example.org/exPredicate3/;Example string 2>

4.2.7 Content request

A content component is identified with the URL, which also tells where the
content component is located. Apart from that the MIME-type is included
to tell what kind of file the proxy server should download and then retrans-
mit. This is a security issue, since it is important to deny files of a certain
MIME-types to be downloaded if they could infect the client or the proxy
server. The word for identifying this request is GETCONTENT. Example:

GETCONTENT http://www.example.org/index.html text/html LCP/0.1

4.2.8 Response to a Content request

This response deviates from the principle of that one request should equal
one response and a waiting state for the client is created. When a request
of content is made it might take a while to get the content to the server,
therefore a response is sent to the client stating whether the server accepts
to download the content or not. This response consists of the URL of the
content and an integer stating the status, all this is inside an angle bracket
pair. Currently the status 1 equals accepted and the status 0 not accepted.
Example:

LCP/0.1 GETCONTENT

<http://www.example.org/expic.jpg;1>

With the status 0, the content is not accepted to be downloaded to the
server. If the status is 1 the content will be downloaded to the server and
the client could expect the server to tell it when this download is finished, so
the connection between the client and the server has to be kept alive. This
is done with a message with the URL on the server the content is located
together with the original URL. Example:

25

LCP/0.1 GETCONTENT

<http://www.example.org/expic.jpg;\
http://www.exampleserver.org/expic.jpg>

If the download somehow fails an error response described below is sent
instead.

4.2.9 Content request of a concept

A set of content components could be assigned to a concept. This is a re-
quest for a list of the content components assigned to a concept. To request
it the URI is the primary argument. The optional second arguments would
be the MIME-types the content in the response should have. If the client
only wants to know of content components in the form of html it could
be specified. Without the second argument MIME-types will not be taken
into consideration. The codeword for identifying this request is GETCON-
CEPTCONTENT and below follows an example:

GETCONCEPTCONTENT http://www.example.org/exampleconcept\
text/html,Image/jpeg

4.2.10 Response to a content request of a concept

The structure of this response is the same for every request, but if MIME-
types are specified in the request only the content components of that type
would be included. The response includes the concept and after that the
list of content components are listed with its URL, MIME-type and a title.
The structure is the same as for the contextual neighbourhood, but with the
MIME-type. If no content is found a pair of empty angle brackets are sent.
Example:

LCP/0.1 GETCONCEPTCONTENT

<http://www.example.org/exampleconcept>

<http://www.example.org/;text/html;The example homepage>
<http://www.example.org/expic.jpg;Image/jpeg;Example picture>

This list is like the list of a contextual neighbourhood included for each
concept in the context-map response. As in the case of the contextual neigh-
bourhood all concept might not be discovered by maps and the ability to see
a list of the assigned content component is provided. It could here as well be

26

the case that all content components are not in the context-map response,
if so this request could be used.

4.2.11 Error response

This response is not fully developed since the main focus is to design the re-
sponses when things works out. Though, some kind of error message should
be sent if a failure or some sort of error occurs. The response is the request
inside an angle bracket pair together with the word FAILED. Example:

LCP/0.1 ERROR

<GETMAP http://example.org/MapURI;FAILED>

This response could of course be more detailed and tell the client what
was wrong, if the syntax of the request was incorrect or if it just failed to
process it. Though this will hopefully be done in a future version.

4.3 Choice of syntax

The design of the protocol was partly inspired by the Hypertext Transfer
Protocol (HTTP), especially the request part of it. Mainly because it is a
simple protocol. As HTTP uses GET, POST and so on, this protocol uses
GETMETADATA, GETMAP and so on to identify the request. The first
argument for the request is always the URI of a resource and, except for the
content request, the second argument is optional. With this second optional
argument a list of several URIs can be specified. They are separated by a
comma as in the example of the metadata request. The request always ends
with LCP/ followed by the version number (0.1 is the current version) of the
protocol and a new line. After that some properties about the client could
be specified the same way as it is done in HTTP. And as in that protocol
the end is marked with two new lines.

When designing the responses to these requests the main focus was to make
the map response as good as possible regarding compactness without loos-
ing too much information. It was designed to include the least amount of
information for a thin client to display the maps. So what is in the design is
considered to be the least amount of information needed. In future version
it can be possible to extend the graphical, abstract, content or navigational
information since they are inside an angle bracket pair, if the information
that needs to be added are in one of those categories. One thing not dir-
ectly taken into consideration is the styling information of certain concept
and concept-relations. In this version they are just handled by a text stat-
ing how certain things should be displayed inside the graphical information.

27

This could be developed further and perhaps be an own category, hence a
new angle bracket pair should be added to include this information. If no
information is found for a category the angle bracket pair should be left
empty to state that no information was found.

The angle brackets are used to separate the different parts, but they have
another important function. Every concept and concept-relation use one
line for the information about it, but sometimes the title (or something else)
uses a linebreak. To recognize if the linebreak mean that a new concept is
coming or if it was just a linebreak it can be detected if they were inside or
outside the angle bracket pair. Inside those the different parts are sometimes
separated by a comma (,) and sometimes by a semicolon (;). The reason
for this is that the comma is used for a list or information that is closely
connected somehow. The semicolon is used otherwise. A problem might
come up that commas and semicolons are used by for example a description
of a concept. Then they should have a backslash(\) included before so that
the client understand if it is a separator or just a part of the text. A way of
reusing information in the protocol is to use the ordering of the concepts for
the information about the statement. Instead of using the whole URI, the
number of the concept is used instead. It preserves parts of the layout layer
discussed in 3.2.1 since otherwise both the Concept-URI and its Layout-URI
would have to be included to be certain to what concept it is otherwise one
concept could only appear once in one map.

The syntax of the neighbourhood and metadata response is just mainly a list
of properties for a certain resource. The semicolon (;) is used for separating
on item in those list and they are inside an angle bracket pair. The angle
brackets are used to show a resemblance with the rest of the responses and
that a new line could be inside the title of the map for the neighborhood
response or in the strings for the metadata request. For the content response
the angle brackets are used just to use a similar syntax. A rough description
of the syntax in EBNF is included in Appendix B.

28

5 Proxy server for a Concept Browser

One of the goals of this thesis project was to create a proxy server for
gathering information to a Concept Browser running on a client that have
a limited capacity regarding memory and bandwidth. The basic problem
lies in the structure of the information when using RDF. So the idea is that
when the client needs information it requests the proxy server. The request
is processed by the server which sorts out and creates a reply containing
necessary information for the client composed according to the protocol
described in chapter 4. Possible clients are:

• An unsigned Java Applet running on a webpage. It has a restriction
of only being allowed to gather information from the same source as
it was loaded from. That would be possible with a proxy server.

• A Flash program running on a webpage.

• Portable machines, such as PDA’s and mobile phones with a lower
bandwidth and memory capacity.

5.1 Request handling

The idea of a proxy server is to be a middle hand in the process of transmit-
ting a request and a response between the client and the server. If a client
requests something from a proxy server it gets an answer from the proxy
server even though the information is (usually) located on another server.
The proxy server finds the requested information and downloads it. Some
processing of the information is probably needed and then the information
is sent to the client. To keep the request and the response between the client
and the proxy server easy to handle, the request would be handled like this:

1. Receive and identify the type of request.

2. Harvest information and fill cache.

3. Extract the necessary information.

4. Compose and send a reply.

Another possible way could be to not await all information, but to send
parts of it directly when it is found. This would mean that we keep a lot
of states in the proxy server and that is not wanted since it could lead to a
tricky matchmaking of what information has been sent or not. So to keep it
simple, one request equals one response. This goes hand in hand with the
protocol defined for transmitting the information and was one of the reason
to why the protocol is stateless.

29

5.1.1 The connection between the client and the proxy server

The proxy server needs to receive the request, which should be done by
some sort of connection is opened between the client to the server. Since
this server will serve more than one client it is possible that several requests
might come to the server at the same time. Therefore the server should
be able to start processing a request even if it is processing another, which
means that the server has to be multithreaded. When this connection is
made it should remain open at least until a response have been sent in that
connection. Otherwise it would be impossible for the client to remember
what request corresponds to what response as mentioned in chapter 4.

When the request is received it will be parsed and identified. The possible
request were described in the previous chapter.

5.2 Techniques for harvesting information

When the request is identified necessary information often needs to be
gathered. Since information is (probably) not located on the proxy server it
needs to be downloaded from relevant servers, that first has to be located.

Now two possible scenarios could appear, either the location of the in-
formation is known or it is not known. Let us now consider the first case.
This could either be the case that the information is already on the proxy
server through some sort of caching and it could be easily referenced. It
could as well be the case that the information is not in the cache of the
proxy server and needs to be downloaded to the server. The location
of the information can in most cases be discovered through the property
CVN:IncludeContainer.

However, when harvesting information only through downloading contain-
ers the set of available information gets limited to the information in those
containers. This will show when information should be extracted, since all
statements where the resource is the subject are usually placed in the same
container. On the other hand, when looking for statements where a cer-
tain resource is the object is much harder since those statements are usually
spread out in several containers.

It is more troublesome if the location of the information is not known. How
things could be found on the Semantic Web through Conzilla are described
in [2]. It is done by sending a question out on the Edutella network, which
is a peer to peer network using RDF. Question could be asked by using
the Edutella Query Language QEL [1] on that network. Another technique
using RDF query language (RDQL) is the Sesame project described in [5].

30

Through this technique it is possible to extract only the information needed
from containers stored on that system and don´t have to download the rest
of it. That would save memory and probably some time for the proxy server,
but to use it the location would probably have to be known. Edutella and
Sesame are two system that could help provide information for the proxy
server. The main difference when for the proxy server to use them is that
Edutella is built as a peer to peer application where Sesame is more built as
a database/server on the internet. These two techniques could be used even
when the location of information is known. That way only the information
needed would be downloaded and not the whole container and when these
techniques are fully developed they are probably to be preferred.

5.3 Caching techniques

When the information is downloaded to the proxy server it should at least
be kept on the proxy server until the information needed has been extracted
and a response has been made. After that the information should be kept
in a cache on the proxy server, since the information used to create a re-
sponse for one request is usually closely related to the next request and that
response could be created quicker. Deciding exactly what to cache and for
how long is a tricky question. One important part of information good to
cache is the statements that includes information on where to find more in-
formation about certain resources, like the property CVN:IncludeContainer.
If that points to a container it should perhaps not be downloaded but it is
important information for the proxy server. If they were to be downloaded
directly once they were found would lead to a quick overflow of the cache
and since the downloaded containers in turn could include links to other
containers it would necessary to download them as well. It would be ne-
cessary to decide when to stop so not too many containers is downloaded
and the best would be to not download the containers until they were really
needed. This way memory is saved, but it relies on that things could be
quickly downloaded to the proxy server.

Apart saving the information where more information is located some of
the statements downloaded should be kept in the cache. To save memory a
limit for the cache is needed to not overflow it. The tricky question is when
to drop information from the cache. It is important to keep statements that
are often referenced in the cache and drop the statements used less often.
This could be solved by making the cache a First in First out queue. All
statements are put in the queue once they arrive to the proxy server. If
the cache starts to get full it would cut of at the end of the queue which
are the statements less frequently used. To keep the information frequently
used at beginning of the queue it is updated every time a statement is ref-
erenced by putting it in the beginning of the queue again. This way the

31

statements often used are kept in the cache and the ones less frequently
used are dropped. The cache of information should be separated from the
cache that indicates where more information is located. That is because
those statement might not be used that much and be dropped by the cache
even if they keep valuable information. If two queues are used this would
be avoided.

5.4 Extract the necessary information

When the information wanted is harvested it should be possible to extract
necessary information to be able to create a response to the request. It could
be the case that some information links to other information, for example
the property CVN:includeContainer. If so, the harvesting step should be re-
peated. When everything needed is loaded and cached required information
can be extracted from the graph of statements.

When extracting information several situation can occur where different
parts of the statements are known. Three common situations for the proxy
server are:

• The subject and the property of the statement are known and what is
searched for is the object.

• Only the subject is known and all those statements with this resource
should be extracted.

• The property and the object are known and the subject should be
extracted.

5.4.1 Extracting metadata

Metadata for a concept is extracted by finding the statements where the
concept-resource is the subject. Metadata can be extracted in two ways,
either the predicate for that resource is known. In that case the statements
with the concept-resource as the subject and all the predicates should be
extracted. If the predicate is not known all statements where the concept-
resource is the subject are extracted.

5.4.2 Extracting a contextual neighbourhood

A contextual neighbourhood of a concept is the context-maps that contain
that concept. This means that a search has to be done in the reverse way
to the metadata-search, since the maps are referring to the concept. This
means that the predicate and the object in the RDF-statement are known,
but not the subject.

32

If a concept-resource is included in a map when using the Conzilla vocabu-
lary it is the value of the property CVL:displayResource as in figure 7. The
subject of such a property is the layout of a concept which can be included
in a context-map. The next thing to do is to find if this layout is included in
a map. The maps found are the contextual neighbourhood of the concept.

5.4.3 Extracting a context-map

Extracting a context-map is done by searching as in section 5.4.1. Here
all the properties are predefined and known in advance. It is necessary to
know what kind of RDF vocabulary that is used and what properties it
defines for a context-map. For this thesis the Conzilla vocabulary is used
and a part of it not mentioned before is the styling part of it. It has the
URI http://kmr.nada.kth.se/rdf/style# and will be abbrieviated CVStyle:.
Another vocabulary called Dublin Core is used as well, and the URI http://-
purl.org/dc/elements/1.1/ is abbrieviated DC:

For the Conzilla vocabulary a context-map has the type CVL:ConceptMap.
That resource has the graphical information, which is the size of the map,
through the property CVL:dimension. The title is found through the prop-
erty DC:title. The maps consists of several layouts for concepts and State-
ments. From the concept layout the information about the concept can
found, according to the following:

• Abstract information is basically the metadata about the actual
concept on the abstract layer. To find it the property CVL:display-
Resource is provided which has the value of the actual concept. The
concept has an URI, and the title and description can be found through
the properties DC:title and DC:description for that URI.

• Graphical information is found through the properties CVL:location
and CVL:dimension. To know how the concept should be styled can
be found by the property CVStyle:boxStyle

• Navigational information is provided through the property CVN:-
hyperlink and the contextual neighbourhood is found as described in
section 5.4.2.

• Content information How this should be handled is not yet defined
in the Conzilla vocabulary, so currently this is not possible.

The statement layout gives information about a statement according to the
following:

33

• Abstract information Is found the same way as from the concept
layout, through the property CVL:displayResource, which indicates
which reification it is displaying. It links to the abstract information
through the properties DC:title and DC:description.

• Graphical information Is found through the properties CVL:statement-
Line and CVStyle:lineStyle and for the arrow the properties CVStyle:-
lineHeadStyle and CVStyle:lineHeadInLineEnd is used.

• Navigational information and content information Are treated
the same way as for the concept layout

5.5 Compose a response and send it

This part goes hand in hand with the previous step, since they could be done
at the same time. Exactly how to compose the response was described in
chapter 4. This is actually done by combining a string with the information
that is extracted.

5.6 Implementation

To implement a proxy server that met the requirements an object oriented
design was done that ended up with the class diagram in figure 8. The main
goal of the design except meeting the requirements was to keep a simple
design without loosing possibility to extend it. An implementation has been
done according to this design. How each requirement is met is discussed in
the following chapter.

5.6.1 External API:s used

The Conzilla application provides several useful classes for loading and locat-
ing context-maps represented in RDF with the Conzilla Vocabulary. A class
diagram over the important classes are shown in figure 9. These classes have
formed a base for building the application in this thesis project. This way
a resemblance with the Conzilla project is made. Since they are written to
load context-maps made in RDF they are very useful for the purpose of this
thesis.

5.6.2 Connection

The connection for sending the requests and responses is established through
HTTP. The reason for this was that the J2ME on the mobilephone, the cli-
ent the server was primarily created for, could provide a HTTP-connection.
The connection will listen and receive connections through some TCP-port,

34

Figure 8: Class diagram of the Conzilla classes used in this project.

currently 8082. For this class to handle several requests and process them
concurrently a request is assigned to be handled by its own thread. These
threads are instances of the class HttpProcessor which handles the HTTP
part of the communication. The class parses the protocol and the content
of it which is the LCP-protocol. This information goes into instances of
the classes HttpHeader and LCPheader. These are given to the LCPRe-
questHandler which identifies what kind of request this was and creates an
instance of a Response. Exactly what instance depends on the request.

5.6.3 Harvesting and storing information

To be able to load and store information on the proxy server classes from the
Conzilla project have been used. The important one is the ResourceStore

35

Figure 9: Class diagram of the Conzilla classes used in this project.

which handles all information of a downloaded container. It has the possibil-
ity to load a container into memory and from it information can be retrieved.
A static instance of that class is created inside the LCPRequestHandler. So
when a container needs to be loaded it is done through this instance. It is
used for extracting information as well and it can be seen as the information
centre. The information is cached inside the Cache, which is the cache of the
proxy server. The current implementation is not very flexible and it stores
everything from a loaded container. This way information will only have
to be downloaded once, but this will eventually lead to an overflow of the
cache. The current solution to locate more information relies on that the
property CVN:includeContainer is provided. If this property is not there
and the information does not exist in the cache it cannot be found.

5.6.4 Extracting information and create a response

This is done inside the different subclasses of Response. The name reveals
what kind of service is done. For example if a map was requested, an instance
of the class LCPMapResponse is created and is responsible for the response.
If metadata was requested an instance of the class LCPMetadataResponse is

36

created, and so on. These instances should reference the cached information.
If it does not exists there information need to be harvested.

To extract information about a map could is done this way, but since the
maps are an important part of the Concept Browser, special classes are cre-
ated to handle them. The class MapStoreManager is used, which is initiated
by a ResourceStore and the URI of the map. When it is initiated an instance
of the class ConceptMap is created which holds information about the map.
From that the information about the concepts and concept-relations can be
retrieved through instances of StatementLayout and ConceptLayout. They
are classes to represent the Statement layout and Concept layout discussed
in section 3.2.1.

5.6.5 Environments

The chosen programming language for the project is Java. The reason for
this choice was:

• The code for Conzilla is written in Java and therefore a natural choice
for this code as well

• by using the same code the Conzilla classes can be used in the code for
this project since Java is an object oriented programming language.

• The external Jena API is written in Java, which could be used in an
extension of this code. The Conzilla code makes use of the Jena API.

• The programs written in Java is compiled to run on the Java Virtual
Machine, so the compiled program can run on platforms other then
they are compiled on. The virtual machine also provides an automatic
garbage collection.

To compile the Open source program Ant has been used. It is a program
designed to compile programs written in Java, where the instructions are
defined in an XML-file. Such a file already existed for the Conzilla project,
so that file could easily be extended to compile the server.

37

6 Conclusions

The main problem for a Concept Browser as a thin client is to handle the vast
amount of information. This was the reason that this project was initiated
and to create a serverside solution the questions in the introduction needed
to be answered.

6.1 The requests

The first question I posed was: What could be requested of a proxy server to
enable the idea of a Concept Browser as a thin client? The most essential
part for a Concept Browser are the context-map and the referencing concept
and concept-relations that belongs to it. These essentials are all in one
request. Apart from that it is necessary to navigate and explore contexts
and concepts. Therefore the requests for a contextual neighbourhood for
a concept to navigate and a list of the content-components assigned to it
for exploring are needed. To request those content-component of the proxy
server could help certain types of clients and should therefore be possible as
well. Another important request is the metadata request since a concept or
a content-component can have metadata not retrievable by in other ways.
All in all I have covered the needs of a Concept Browser in five requests.

6.2 The protocol

When the possible requests had been recognized a way of communicating
a request and its response needed to be designed. The second question I
posed was therefore: What kind of protocol would be needed and how should
it be designed? The protocol designed was text based and stateless and is
running over HTTP. By doing that a compromise could be made between
not using too much bandwidth or memory and CPU time on the client side.
The protocol is designed to be simple and compact. The information sent
is rather limited, though, by the angle brackets it can be extended.

6.3 Harvesting and caching

The last question I posed was: For these purposes, how should information
from the Semantic Web be harvested and cached? How to harvest the Se-
mantic Web is a tricky question and a problem not yet totally solved for the
Semantic Web, but a solution that work for the most common scenarios for
the proxy server relies on the property CV:includeContainer to point out
where information about a resource can be found. As long as that inform-
ation is provided the proxy server can find information even if it cannot be
guaranteed that all relevant information is found.

38

The information and the information where the information resides, should
be kept in two different caches. To cache information is a way to optimise
performance by not having to download information to the proxy server too
often. The cache that is used in the implementation is currently just caching
everything that comes into the proxy server. This could of course lead to
an overflow, but if the set of information is limited it will work for a first
version of the proxy server.

6.4 Future perspectives

The protocol was designed for the requests that were needed for a Concept
Browser, but the response part could be improved in future versions. The
response to a maprequest have graphical information to draw a map, but it
does not say exactly how. For example if a line should be dotted or if a box
should have sharp or rounded corners. For instance some kind of stylesheet
could be added to the protocol instead of the current solution of including it
in the graphical information. Another related thing that could be improved
is to put an arrow at both ends of a line, but it is not possible in this version
and it is not supported yet in the Conzilla vocabulary. The request of a
content component is perhaps not the task for the proxy server, but could
help certain clients. Unfortunately that request makes a state appear in the
proxy server which is against the design goal put up for the protocol. If the
protocol remains stateless and this feature is kept this needs to be addressed.
The error response needs to be further developed, for example with error
codes.

The KMR group at CID is taking part in the Edutella project and in the
Master’s thesis by Henrik Eriksson [2] a possible way to ask questions to the
network from Conzilla was proposed. To use the Edutella network would
mean that a larger amount of information would retrievable, but the set of
information is limited to the one on that network and exactly how to use
Edutella for harvesting remains to be investigated.

39

References

[1] Edutella query language, QEL. http://edutella.jxta.org/spec/qel.html.
Last visited: January 31, 2006.

[2] Henrik Eriksson. Query Management for The Semantic Web. Master’s
thesis, Uppsala University, March 2003.

[3] Hypertext Transfer Protocol, HTTP/1.1.
http://www.w3.org/Protocols/HTTP/1.1/rfc2616.pdf. Last visited:
January 31, 2006.

[4] Java micro edition. http://java.sun.com/j2me/index.jsp. Last visited:
January 31, 2006.

[5] Arjohn Kampman Jeen Broekstra and Frank van Harmelen. Sesame,
An Architecture for Storing and Querying RDF Data and Schema In-
formation, chapter 7, pages 197–222. The MIT press, 2003.

[6] Knowledge Management Research Group. http://kmr.nada.kth.se. Last
visited: January 31, 2006.

[7] Ambjörn Naeve. Conceptual Navigation and Multiple Scale Narration in
a Knowledge Manifold. CID-52, TRITA-NA-D9910, Dept. of Numerical
Analysis and Computer Science, KTH, Stockholm, Sweden, 1999.

[8] Ambjörn Naeve. The concept browser, a new form of knowledge man-
agement tool. In Proceedings of the 2:nd European Web-Based Learning
Environments Conference (WBLE 2001), Lund, Sweden, 2001.

[9] Mikael Nilsson and Mattias Palmér. Conzilla, Towards a Concept
Browser. CID-53, TRITA-NA-D9911, Dept.of Numerical Analysis and
Computer Science, KTH, Stockholm, Sweden, 1999.

[10] RDF Primer. http://www.w3.org/TR/rdf-primer/. Last visited: Janu-
ary 31, 2006.

[11] RDF Vocabulary Description Language 1.0: RDF Schema.
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/. Last vis-
ited: January 31, 2006.

[12] RDF/XML Syntax Specification.
http://www.w3.org/TR/rdf-syntax-grammar/. Last visited: January
31, 2006.

[13] The Semantic Web.
http://www.scientificamerican.com/article.cfm?articleID=00048144-
10D2-1C70-84A9809EC588EF21&catID=2. Last visited: January 31,
2006.

40

Appendices

A Conzilla Vocabulary

This Appendix includes parts of the vocabularies for Conzilla.

Layout

The following resources and properties are used for the layout of the context-
maps, concepts and concept-relations. The whole URI is not typed, but it
can retrieved by adding http://kmr.nada.kth.se/rdf/graphic#.

Resource ContextMap
Resource NodeLayout
Resource ConceptLayout
Resource StatementLayout
Resource LiteralStatementLayout
Property subLayerOf
Property displayResource
Property location
Property dimension
Property literalLocation
Property literalDimension
Property bodyVisible
Property subjectLayout
Property objectLayout

Property statementLine
Property statementLinePathType
Property boxLine
Property boxLinePathType
Resource LinePathType Straight
Resource LinePathType Curve

Property horizontalTextAnchor
Property verticalTextAnchor
Resource Center
Resource North
Resource South
Resource East
Resource West

41

Navigation

The following properties are used for navigation purposes. The whole URI
is not typed, but it can retrieved by adding http://kmr.nada.kth.se/rdf/-
navigation#.

Property hyperlink
Property includeContainer

Style

The following properties are used for styling the context-maps, concepts
and concept-relations. The whole URI is not typed, but it can retrieved by
adding http://kmr.nada.kth.se/rdf/style#

Property styleInstance
Property styleClass
Property boxStyle
Property boxFilled
Property boxBorderStyle
Property boxBorderThickness
Property lineStyle
Property lineThickness
Property lineHeadInLineEnd
Property lineHeadStyle
Property lineHeadFilled
Property lineHeadWidth
Property lineHeadLength
Property lineHeadLineThickness
Property boxLineStyle
Property boxLineThickness

42

B EBNF for LCP

(* This describes version 0.1 of LCP in EBNF. The protocol
consists of two different parts, the requests and the
responses. *)

Request = MapRequest | NeighbourhoodRequest |
MetadataRequest | ContentRequest |
ConceptContentRequest;

Response = MapResponse | NeighbourhoodResponse |
MetadataResponse | ContentResponse1 |
ContentResponse2 | ConceptContentResponse |
ErrorResponse;

MapRequest = ’GETMAP ’,URI,’ ’,[URI,’ ’],’LCP/0.1’,
2 * new line;

MapResponse = ’LCP/0.1 GETMAP’,2 * new line,
’<’,URI,’;’desc-string,’><’,Integer pair,’>’,
2*new line,
((’<>’,new line) |
(MapConcept,{MapConcept})),new line,
((’<>’,new line) |
(MapRelation,{MapRelation}),new line;

NeighbourhoodRequest = ’GETNEIGHBOURHOOD ’,URI,’ ’,[URI,’ ’],
’LCP/0.1’,2*new line;

NeighbourhoodResponse = ’LCP/0.1 GETNEIGHBOURHOOD’,
2 * new line,’<’,URI,’>’,2 * new line,
((’<>’,2*new line)|
(’<’,URI,’;’,desc-string,’>’,new line
{’<’,URI,’;’, desc-string,’>’,
new line},new line));

MetadataRequest = ’GETMETADATA ’,URI,’ ’,[{URI,’,’},URI,’ ’],
’LCP/0.1’,2 * new line;

MetadataResponse = ’LCP/0.1 GETMETADATA’,2 * new line,
’<’,URI,’>’,2 * new line,
((’<>’,2*new line)|
(’<’,URI,’;’ (desc-string | URI) ,’>’,
new line,

43

{’<’,URI,’;’ desc-string | URI ,’>’,
new line}, new line));

ContentRequest = ’GETCONTENT ’,URI,’ ’,MimeType,’ ’,
’LCP/0.1’,2 * new line;

ContentResponse1 = ’LCP/0.1 GETCONTENT’,2* new line,
’<’,URI,’;’,(’0’|’1’),’>’,2*new line;

ContentResponse2 = ’LCP/0.1 GETCONTENT’,2*new line,
’<’,URI,’;’,URI,’>’,2*new line;

ConceptContentRequest = ’GETCONCEPTCONTENT ’,URI, ’ ’,
[{MimeType,’,’},MimeType],2*new line;

ConceptContentResponse = ’LCP/0.1 GETCONCEPTCONTENT ’,
2 * new line,’<’,URI,’>’,
2 * new line,
((’<>’,2*new line)|
(’<’,URI,’;’, MimeType,
’;’,terminal string,’>’, new line,
{’<’,URI,’;’, MimeType,
’;’,terminal string,’>’, new line},
new line));

ErrorResponse = ’LCP/0.1 ERROR’,2*new line,
’<’,(’GETMAP ’|’GETNEIGHBOURHOOD ’|
’GETMETADATA ’|’GETCONTENT ’|
’GETCONCEPTCONTENT ’),URI,’;FAILED>’,
2*new line;

MapConcept = ’<’,URI,’;’,desc-string,’;’,desc-string,’><’,
Integer pair,’;’,Integer
pair,’;’,box type,’><’,[URI],’;’,[{URI,’,’},
URI],’><’,[{URI,’,’,mimetype,’;’},URI,’,’,
mimetype],’>’,new line;

MapRelation = ’<’,URI,’;’,URI,’;’,Integer pair,’;’terminal
string,’;’,desc-string,’><’,Integer pair,
’,’,Integer pair,{’,’Integer pair,’,’,
Integer pair},’;’,line type,’,’,arrow type,’,’,
direction,’><’,[URI],’;’,[{URI,’,’},URI],’><’,
[{URI,’,’,mimetype,’;’},URI,’,’,mimetype],’>’,
new line;

44

URI = (*As defined in RFC 2396 at http://www.ietf.org/ *)

digit = ’0’ | ’1’ |’2’ | ’3’ | ’4’ | ’5’ | ’6’ |
’7’ | ’8’ | ’9’;

new line = ? ISO 6429 character Carriage Return ?,
? ISO 6429 character Line Feed ?

MimeType = (* As defined in RFC:s 2045-2049 at
http://www.ietf.org/*)

desc-string = {(terminal character - ’;’)-’,’|\;|\,};
(* a terminal character as defined in the

EBNF-standard*);

Integer pair = digit,{digit},’,’,digit,{digit};

line type = (’continous’|’dotted’|’dashed’|’dashdot’|
’dashdotdot’|’dashdotdotdot’)

arrow type = (’arrow’|’varrow’|’sharparrow’|
’bluntarrow’|’diamond’|’none’)

box type =(’rectangle’|’roundrectangle’|’diamond’|’ellipse’|
’flathexagon’|’upperfive’|’lowerfive’|’invisible’)

45

C Example of a map in LCP

In the following example of a context-map in LCP a \ will be used to break
the line to fit the margins and it is not a part of LCP. This example corres-
ponds to the map in figure 1.

LCP/0.1 GETMAP

<http://www.conzilla.org/rdf/demo;\
http://www.conzilla.org/rdf/demo><185;203>

<http://www.conzilla.org/rdf/concepts#16925b0f7ee40f955;\
Maps;Maps><48,12,72,24;rectangle><;><http://www.google.com/,\
text/html>
<http://www.conzilla.org/rdf/concepts#16925b0f7ee410070;\
Food;Food><6,72,42,24;rectangle>\
<http://www.conzilla.org/rdf/demo#mat;>\
<http://www.google.com/,text/html>
<http://www.conzilla.org/rdf/concepts#16925b0f7ee4112e9;\
Course;Course><114,72,54,24;rectangle><;>\
<http://www.google.com/,text/html>
<http://www.conzilla.org/rdf/concepts#16925b0f7ee4117c2;\
Culture;Culture><96,108,54,24;rectangle><;>\
<http://www.google.com/,text/html>
<http://www.conzilla.org/rdf/concepts#16925b0f7ee411d39;\
Business;Business><6,108,60,24;rectangle><;>\
<http://www.google.com/,text/html>
<http://www.conzilla.org/rdf/concepts#16925b0f7ee4120db;\
Entertainment;Entertainment><36,144,96,24;rectangle><;>\
<http://www.google.com/,text/html>

<http://www.conzilla.org/rdf/concepts#16925b0f7ee45b78b;\
http://www.w3.org/2000/01/rdf-schema#subClassOf;1,0;\
concepts#16925b0f7ee45b78b;concepts#16925b0f7ee45b78b>\
<84,36,84,72,48,78;0,0,0,0;continous,arrow;f><;>\
<http://www.google.com/,text/html>
<http://www.conzilla.org/rdf/concepts#16925b0f7ee45c055;\
http://www.w3.org/2000/01/rdf-schema#subClassOf;4,0;\
concepts#16925b0f7ee45c055;concepts#16925b0f7ee45c055>\
<84,36,84,72,60,108;0,0,0,0;continous,arrow;f>\
<;><http://www.google.com/,text/html>
<http://www.conzilla.org/rdf/concepts#16925b0f7ee45cc0d;\
http://www.w3.org/2000/01/rdf-schema#subClassOf;5,0;\

46

concepts#16925b0f7ee45cc0d;concepts#16925b0f7ee45cc0d>\
<84,36,84,144;0,0,0,0;continous,arrow;f><;>\
<http://www.google.com/,text/html>
<http://www.conzilla.org/rdf/concepts#16925b0f7ee45d5d1;\
http://www.w3.org/2000/01/rdf-schema#subClassOf;3,0;\
concepts#16925b0f7ee45d5d1;concepts#16925b0f7ee45d5d1>\
<84,36,84,72,108,108;0,0,0,0;continous,arrow;f><;>\
<http://www.google.com/,text/html>
<http://www.conzilla.org/rdf/concepts#16925b0f7ee45dea5;\
http://www.w3.org/2000/01/rdf-schema#subClassOf;2,0;\
concepts#16925b0f7ee45dea5;concepts#16925b0f7ee45dea5>\
<84,36,84,72,114,78;0,0,0,0;continous,arrow;f><;>\
<http://www.google.com/,text/html>

47

TRITA-CSC-E 2006:040
ISRN-KTH/CSC/E--06/040--SE

ISSN-1653-5715

www.csc.kth.se

