
Aspect filtering as a tool to support
conceptual exploration and presentation

Daniel Pettersson

November 2000

TRITA-NA-E0079
CID/NADA/KTH

2

3

Abstract

The ability to effectively filter information when presenting large amounts of data is
of great interest – but how do you do it in practice? This is the main focus of my
work, which includes design and implementation of an aspect filtering toolkit in
Conzilla. Conzilla is a tool for conceptual exploration and presentation of digital
information.

Conzilla is developed in Java and receives structured information according to a data
model, presently based on files written in XML. The information is presented as
concepts in mind-maps, concept-maps, that the user may navigate through.

The result of my work has been to design a dynamic functionality that filters the
content of a concept according to an arbitrary choice of aspects. Dynamics is essential
since you sometimes want to change filter depending on the context for a chosen
concept. I have implemented a functionality in Java, which uses the data model
structure found in the XML files to match the aspects.

This thesis is a part of a distributed learning environment that is being developed at
the Centre for user-oriented IT-design (CID), at the Royal Institute of Technology
(KTH) in Stockholm. It has been supervised by Tekn. Dr. Ambjörn Naeve, who is a
mathematician and a senior researcher in interactive learning environments at CID.

4

5

Aspektfiltrering som hjälp vid begreppsnavigering och presentation

Sammanfattning

Att effektivt kunna filtrera information är av stort intresse vid presentation av större
datamängder – men hur gör man för att uppnå detta i praktiken? Detta är problemet
som jag har jobbat med och därtill göra en implementation i
begreppsnavigeringsverktyget Conzilla.

Conzilla är skrivet i Java och tar emot strukturerad information, enligt en särskild
datamodell, som idag kommer ifrån XML-filer. Sedan presenteras informationen som
begrepp i “mind-maps”, begreppskartor, som användaren kan söka i.

Min lösning blev en dynamisk funktionalitet som filtrerar ett begrepps innehåll på ett
godtyckligt val av aspekter. Dynamiken är viktig eftersom man enkelt vill kunna
ändra filter beroende på sammanhanget för valt begrepp. Jag har i Java designat en
filterfunktionalitet som utnyttjar strukturen i datamodellen, återspeglad i XML-filerna,
för matchning mot olika aspekter.

Examensarbetet är utfört vid CID (Centrum för användarorienterad IT-utveckling) på
NADA, KTH och ingår som en del av forskningsarbetet med distribuerade interaktiva
läromiljöer. Arbetet har handletts av teknologie doktor Ambjörn Naeve, som är
matematiker och seniorforskare i interaktiva lärmiljöer vid CID.

6

7

Acknowledgements

Curiosity led me to investigate different projects at CID, which I find has an
interesting profile with its staff of mixted skills (computer science, art, human
perception etc.) in order to create a genuine environment for user-oriented IT-design.

An unscheduled meeting with Ambjörn Naeve caught my interest, listening to his
visions about interactive learning. He has supervised my work in a thankful way,
letting my ideas evolve freely with him as a resource to discuss design and
complications with. I also would like to thank Matthias Palmér, who together with
Mikael Nilsson is the original developer of Conzilla. Without his knowledge about the
structure in Conzilla and his profession in Java, my job would have been a lot
tougher.

Finally I would like to thank CID for letting me have a great working space of my
own during the time of this thesis.

8

9

Contents

1. Introduction 11

1.1 Background 11

1.2 Concept browsers 12

1.3 Conzilla 12

1.4 The filter problem 15

2. A possible solution 17

2.1 Filter nodes 17

2.2 GUI 18

2.3 Metadata 19

2.4 Component editor 19

3. Filters in Conzilla 20

3.1 The results in Conzilla 20

3.2 Using filters 20

3.3 Connecting or changing filters 20

3.4 Editing filters 21

4. Implementation 22

4.1 Filter neurons 22

4.1 UML 23

4.2 API 24

4.3 Design techniques 25

5. Future Extensions 26

A Glossary 29

 A.1 Special terms 29

 A.2 Abbreviations 30

10

11

Chapter 1

Introduction

In terms of latest news in learning and teaching, many ideas involve software tools
and a lot of people believe computerized learning will have a great impact on
education in the future. But when interested in creating a worldwide usable learning
tool, with the ambition to gather expertise information from wherever it’s at – using
the Internet – you easy end up with a lot of information.

Here is a great problem nowadays, how do you find the needles in the haystack?
Assume there are loads of information about a subject of interest, but you often
simply look for certain bits of it. There are several attempts on solving this dilemma,
e.g. search engines on the Internet such as Altavista or Yahoo. But as we all know,
they seldom return perfect links.

However, interesting work is being done by the IMS project [7], developing a
platform-independent framework for web-based learning material. As worldwide web
presentation of information begin to follow these standards we get deeply improved
possibilities for sorting or filtering information in a more professional way.

Conzilla is a learning-tool, developed at CID at KTH, with the ambition of being
on the edge in computerized learning. The Conzilla project follows IMS standards and
makes a good platform for taking care of the needles in the haystack – which is where
this thesis begins.

In this thesis I will first mention the problem of filtering information and under what
circumstances I worked. Then finally present the results in Conzilla and a discussion
about recommendations and future extensions to filtering.

1.1 Background

There are three major areas of research at CID at KTH and one is Interactive Learning
Environments. In 1996 the first project in this area was initiated, called the Garden of
Knowledge (GoK), founded and supervised by Ambjörn Naeve.

A key philosophy in the research is to modularise teaching and learning, by
modularising conceptual content into knowledge components, see [4]. These
components will be constructed in an internationally standardized form, in particular
following the standards written by the IMS-project. The components make it possible
to separate the content and the context of a given concept, with other words “what to
teach” and “what to learn”. This is contrary to for example a traditional course where
the connection between content and context is already set.

In 1998 two students got interested in the GoK ideas and developed the first
concept browser under the supervision of Ambjörn. Mikael Nilsson and Matthias
Palmér named their tool Conzilla and it was developed as a part of their master thesis
work in computer science at TDB (Dept. of Scientific Computing) at Uppsala

12

University. Conzilla really caught their attention and they have continued developing
it, Matthias is now a PhD student at CID.

The amount of discussed future extensions for Conzilla are huge. Among the ideas
is, originally described by Ambjörn in [4], the possibility for the user to filter the
information of a chosen concept on a dynamical set of aspects. This is where my
thesis work takes place – creating a dynamic filter functionality for Conzilla.

1.2 Concept browsers – design principles

Conzilla is described as a concept browser, but what is that? A conceptual
organization and presentation scheme that supports the conceptual context will be
referred to as a concept browser, introduced by Ambjörn in [4]. Ambjörn also
presents six design principles for this kind of browser:

 (i) Separate context from content.

 (ii) Describe each context in terms of a concept-map. A concept-map is a kind of
mind-map, relating the concepts in the context.

 (iii) Assign an appropriate set of components as the content of a concept and/or
conceptual relationship.

 (iv) Filter the components through different aspects.

 (v) Label the components with a standardized data description (= metadata) scheme.

 (vi) Transform a content component, which itself is a concept map, into a context by
contextualizing it.

As Conzilla is still under development to become a true concept browser, principle
(iv) was not implemented yet and caught my interest in completing.

1.3 Conzilla

As Mikael and Matthias describe their focus [3]:

 “We are interested in the organization of knowledge of any kind, and the
presentation of this organization.”

Regarding the design principles of a concept browser described in 1.2, they found
some further requests when designing Conzilla:

• Platform independent, in order to build a worldwide usable tool they chose Java.

13

• Information should be able to be presented in any form - movies, text, audio,
pictures etc. Regarding the principle (i) in 1.2 implied they separated the
organization of knowledge from the presentation of it. They chose the presentation
to be shown in an external content displayer, presently in the default webbrowser.

• Wanting easy usability and information in a standardized way, they followed the
guidelines given by the IMS-project, which provides hints for computerized
learning.

• The information for presentation is structured according to a data model, in order
to make it easy to reach and organize. Presently the input information is given in
XML files, which is a good markup language for structured information

The tool presents the conceptual relationships between a set of concepts in a model
that strongly resembles UML class diagrams, see [13] and [14]. The input data is
presented as concepts related in surfable concept-maps, and allows the user to view
the content describing these concepts. A set of connected concept-maps is referred to
as a knowledge patch. It could represent an area of interest, such as e.g. music
instruments.

Fig. 1 Conzilla presenting the concept-map "musikkarta".

In order to describe my development in Conzilla I will first present a short guide to
the program:

• Loading a concept map – First you must load a concept map into Conzilla.
Either you give this parameter when starting up Conzilla or you can use the Open
map, in the File menu (see Fig. 2).

14

Fig. 2 Open map in Conzilla.

• Surfing – To navigate between different concept-maps is called “surfing”. You
use the mouse to focus on a concept of your interest. Right-click a concept and a
menu appears. There you choose the “surf” command (see Fig. 1), which brings
up a more detailed concept map for the concept you choose. If the surf command
is greyed out, you can’t choose it because there is no detailed map available.

• Viewing the content of a concept – Right-click a concept and the menu appears.
Now choose the “view” command. This will present a list with all different
content on Conzilla’s right-hand side (see Fig. 1). Pick a content of interest and
your default webbrowser will be launched, presenting the chosen content. If the
view command is greyed out, you can’t choose it because there is no content
available for this concept.

• Displaying metadata of a concept – Right-click a concept and the menu appears.
Now pick the “info” command. This will present a list of metadata about the
chosen concept, e.g. saying who the author is and when it was created etc (see Fig.
3).

Fig. 3 Metadata fields.

15

For further knowledge in operating Conzilla, refer to the homepage1of the project.
Here you can download the program for free, read the manual, latest news or join a
discussion group.

1.4 The filter problem

A serious problem when using Conzilla is that you could get overloaded by
information. Suppose you are curious about a concept that is very common and
worldwide well documented. Further you are browsing a concept-map where this
concept has a large set of content components. As you want to view the content of the
current concept, you probably will get lost and bored by the amount of information.
Also a common user situation is that you are simply looking for a specific detail or
aspect of the concept. For example, you are surfing a concept-map about musical
instruments and your concern is to find out all you can about the famous pianomakers
Steinway. It is reasonable that a concept-map about musical instruments includes a
concept about key instruments and probably even beneath that one, another concept
about pianos. Well, there are certainly a lot to know about pianos and if the content of
the piano concept is just a bit ambitiously documented, you will spend the rest of the
day digging for Steinway related stuff.

This is why an option of filtering the content in some way is of great concern. But
what features are relevant for this filter? The idea of filters had been discussed within
the Conzilla project for quite some time and after me having understood the problem,
together with Ambjörn and Matthias the following features seemed desirable:

 (i) Assume that lots of people with specific needs and different knowledge use the
system. Hence, the filter functionality must be dynamic. Different concept-maps
and concepts must have the possibility of using different filters. Also depending
on the current user, the filters must be changeable.

 (ii) People have different needs and backgrounds, which calls for a
“multidimensional” option of filtering. This needs a closer explanation and is
found well described in [4] where the original thought is presented by Ambjörn.
Let’s assume that if a set of concept-maps represents an educative overview of
mathematics and is supposed to be used by all students studying mathematics.
The senior researcher and the high-school kid might have the same question
about the filter aspect where you use algebra, but they would probably have
different opinions on at what depth the information should be presented.
Referred to in [4] as “Multiple scale narration with 2-d resolution based on
clarification and depth”.

 (iii) An easy and understandable way of creating and editing filters within the
browser is an attractive and well needed feature.

 (iv) Filters should be defined in such way that they are easy reusable and allow for
different forms of combination.

1 http://cid.nada.kth.se/il/conzilla/default.html

16

 (v) They should work without the aid of concept maps, as they are useful in
situations dealing only with the database structure, as well as in combinations
with other sorts of concept presentations.

 (vi) As long as all content is tagged with metadata, the filter definition should not
depend on any data format. This allows the filtering of all kinds of digital
information such as text, movies, audio etc.

17

Chapter 2

A possible solution

I had to find an easily understandable way of presenting the filter functionality for a
new user of Conzilla. The logical connection for filtering a concept would be with the
“view” choice in the concept-menu that appears when right-clicking a concept. If no
filter was connected to the concept, a click on “view” would result in a presentation of
all content, like before.

So I wanted to find a design that met all filter requests described in 1.4. First find a
dynamic way to represent a filter. Then there had to be an understandable GUI.
Further there was the question about how and where to connect a filter to a concept.
Finally, how to create and edit filters of your own.

2.1 Filter nodes

An initial question was the underlying representation of filters. After some
discussions, a good alternative was to represent each filter aspect as a node in a
connected tree – a filter tree. Given a connection of two filter nodes only the content
that matches the filter aspect of the node A is passed on to B, the rest are thrown away
(see Fig. 4).

Fig. 4

All the filter aspects that you want to include in your filter are connected to form a
filter tree of your choice. The first node just tells the name of the filter and point out
the first order of filter aspects. Say you choose some filter aspects for filtering a
concept about pianos and create a filter tree of them. Someone picks the aspects
makers and after that one american – then the tree with the chosen aspects, marked
grey, could look like Fig. 5. All the content of the concept piano will be filtered
through the aspects and only the content components that matched both the chosen
aspects will be presented.

A B

18

musicfilter

 american

 makers

Fig. 5

Representing filter with nodes you could easily connect nodes and reuse copies of old
nodes, which match request (iv) in 1.4. Further, several layers of nodes match and
extend the multidimensionality request (ii), each layer could represent one dimension.
But it extends in the respect that each layer doesn’t have to be restricted to the same
dimension. For example, if the aspect history about a concept has an underlying set of
aspects providing different depth of the information, say the aspects low, medium and
high, it could also have two other aspect in the same layer saying modern and early
(history).

But there are limitations in this design. Presently, when you use the filter you pick
a path in the filter tree and that is the only option. But say you would like to get all the
content of the concept piano on both the history and the makers aspects. Well,
presently that is impossible, but one solution is to implement subfilter, further
discussed in Future Extensions Chapter 5.

2.2 GUI

What would an appropriate GUI look like when filtering a concept? One major
preference was that the GUI had to match request (ii), the option of multidimensional
filtering. I had a look at Ambjörns 2-d grid-style presentation for this purpose, found
in [4, Fig. 18, p. 35]. This layout would be very pedagogic when it is useful, but rather
tricky to implement. Since the programming focus was the underlying filtering
algorithms, I decided to go for something easier. A satisfying solution was to
recursively use the same sort of menu that the “view” choice appear in. Where as one
menu represented one layer of nodes. For example, if you have chosen a concept
about piano, the filter could, after the first click on “view”, present a new menu with
the aspects makers, history and artists. Say you pick makers and beneath that one a
new menu appears with the aspects swedish and american – picking american as the
final filter aspect could reveal Steinway among others.

19

2.3 Metadata

There had to be an easy way of changing filter for the current concept or concept-
map, 1.4 (i). As each concept and concept-map includes metadata describing the
object, here would be a sensible place to put the link for the associated filter. The
metadata are easy found in the “edit” choice in the right-click menu, where you also
can edit a metadata field, which fitted the filter-link purpose perfectly. So, by giving
the metadata field of each concept an option of a filter tag with the URI to the first
filter node, a dynamic connection was created.

2.4 Component editor

A final interactive functionality for filters would be how to edit or create new ones.
When I began implementing there was no suitable edit-mode provided by Conzilla,
resulting in that you had to edit filters in their true file format – XML, using an
external editor as Emacs. This was not satisfying, since it forced a non computer
professional user to go outside the Conzilla environment and having to face a quite
tough job creating filters of his own. Still, presumably only a few Conzilla users will
ever create filters – saying people that create a set of concept-maps about an area will
most likely be the best creators of filters for that knowledge patch. These people can
be expected to have good understanding of Conzilla and have probably heard of
Emacs and hopefully of XML. Nevertheless, the Component editor showed up in
Conzilla during the final implementation of the filter, providing a nice environment
for editing and creating filters within the browser and without forcing the user to
interface with XML. Case closed.

20

Chapter 3

Filters in Conzilla

3.1 The results in Conzilla

The final results in Conzilla were that users have the possibilities to create or edit
filters of their own, connect and change filter for any concept or concept-map and
finally to filter any concept on a chosen set of aspects.

3.2 Using filters

A criteria for filtering a concept is that there has to be a filter associated with the
chosen concept. To begin with Conzilla checks whether there is a filter connected to
the chosen concept. If not, it looks for a filter in the current concept-map. The
functionality is built to work like this because say in a concept-map about
mathematics perhaps the wanted filter aspects look more or less alike for different
concepts. Then if there is no filter ever associated in either the concept or the concept-
map – you get all content about a chosen concept, as Conzilla used to work before
introducing filters.

How do you filter a concept in Conzilla? When you surf an arbitrary concept-map
and find an interesting concept, right-click the concept and choose the “view”
alternative. If there is a filter associated with the concept, you will get a new menu
with the first list of aspects. Pick an interesting aspect and Conzilla will return the
content matching your aspect. Sometimes there are multidimensional ways of
filtering. If you pick an aspect that lists another menu beside (it will do so if the aspect
has a small arrow printed before it), you have the possibility of further refining your
filtering choice. Or pick the first alternative “all” in the new list, which returns all the
content of the previous aspect.

3.3 Connecting or changing filters

To connect a filter to a concept, you right-click the concept and choose the “edit”
alternative in the menu. Then you will get a window presenting all metadata
connected to the concept. Choose the “relation” tag and add a relation, see Fig. 3 p.
14. Here you write “Filter” in the “kind” field and the first filter node’s URI in the
“Resource Location” field. When naming the URI you can take advantage of the
resolver.xml, which could contain shortcuts to the file tree. Resolver.xml can be
edited in the Resolver editor.

If you want to change to another filter for any concept, you simply write the new
filter’s URI in the “Resource Location” field mentioned above. Further, the same
procedures apply for connecting and changing filters to concept-maps.

21

3.4 Editing filters

Creating a set of filter nodes and connecting them into a filter tree can be done in the
Component editor, which is included in Conzilla. To open the Component editor, you
pick the Extras menu in the top of the window and there you can choose the
Component editor. Here you create each filter node and fill in name, filter URI and
the filter tag that is used to filter an object (see Fig. 6). For a better tutorial see [11].

Fig. 6 Two filter nodes in the Component editor.

22

Chapter 4

Implementation

First I had to find a structure for the filter files that fitted the rest of the browsing
material, based on XML and using the neuron thinking developed by Mikael and
Matthias. In their model all input to Conzilla are described as neurons related to each
other, like in the brain. Then there had to be a functionality within the browser that
could read these filter representations, present them and on the user’s command be
able to filter the content of a concept through the filter.

Conzilla is developed in a standard object modelling fashion with independent
modules for different functionalities. So I had to design a structure that fitted the
polymorfic pattern, further described in [1] p. 107 Factory method. The design should
be as open as possible, in order to easy implement other kinds of filters or even
filtering techniques in the future.

All the new java files for the filters were put in a separate directory named Filter.

4.1 Filter neurons

The neurons can include different metadata, data and roles. The metadata describes
the specific neuron, the data fields contain the information to use and the role fields
describes the neuron’s relations to other neurons. In Conzilla there is a type system
for neurons. Each neuron is associated with a neurontype. The neurontype for the
filter node was named filter.xml and looks like this:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE NeuronType PUBLIC "-//CID//DTD NeuronType 1.0//EN"
"NeuronType.dtd">

<NeuronType>

 <MetaData>
 <Tag NAME="Constructor">Daniel Pettersson 000412</Tag>
 <Tag NAME="Language">English</Tag>
 <Tag NAME="Title">Filter</Tag>
 <Tag NAME="Description">The Filter type</Tag>
 </MetaData>

 <DataTags>
 <DataTag NAME="FILTERTAG"/>
 <DataTag NAME="ACCEPT"/>
 <DataTag NAME="REJECT"/>
 </DataTags>
...

23

As you can see in the DataTags field it specifies the FILTERTAG. This tag is the one
used to filter the content and there is one for each filter node. A typical filter neuron
file, here musicfilter1.xml, has the following structure:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE Neuron PUBLIC "-//CID//DTD Neuron 1.0//EN" "Neuron.dtd">
<Neuron TYPEURI="cid:local/neurontype/filter">
 <MetaData>
 <Tag NAME="Title">Musikfilter 1</Tag>
 </MetaData>
 <Data>
 <Tag NAME="FILTERTAG">maker</Tag>
 </Data>
 <Role TYPE="refine" NEURONURI="cid:local/ne/musicfilter11">
 <Multiplicity LOWEST="1" HIGHEST="1"/>
 </Role>
</Neuron>

Here you see the associated neurontype filter in row three and in the Data field the
FILTERTAG is set to "maker". Hence, only content tagged with the word "maker"
will pass this filter node.

4.2 UML

Here is a UML diagramm describing the internal relations among the filter files:

 << creates >>

Association

Aggregation

Generalization

AbstractAction and Exception are included in the standard JDK. For further
information on UML see [13] and [14].

AbstractFilter
Filter

ConcreteFilter
Filter node

FilterFactory

SimpleFilterFactory

FilterAction

FilterException

Exception

AbstractAction

24

4.3 API

Class / Method Purpose

Interface Filter

String getURI()
Filter node getFilter node()
void setContent(Neuron)
 throws ControllerException
void showContent(Vector)
Vector filterContent(Filter node, Neuron)

The interface for the filter class.

Returns the URI string of this filter.
Returns the first filter node.
Sets the content for current neuron.

Displays the given content.
Filters the content of given neuron
through given node.

Class AbstractFilter

public AbstractFilter(MapManager,
 MapController, String)
 throws FilterException

The abstract filter class.

The constructor for filter.

Class ConcreteFilter

public ConcreteFilter(MapManager,
 MapController, String)
 throws FilterException

The filter class.

Creates a filter.

Interface FilterFactory

public ConcreteFilter createFilter(
 MapManager, MapController, String)
 throws FilterException

The interface for the filter factory class.

Creates a ConcreteFilter.

Class SimpleFilterFactory

public ConcreteFilter createFilter(
 MapManager, MapController, String)
 throws FilterException

This class creates a concrete filter.

Creates a ConcreteFilter.

Class Filter node

public String getFilterTag()
public Filter node getRefine(int)
public FilterAction getAction()
public int numOfRefines()
public Filter node getTop()
public void setTop(Filter node)

The filter node class.

Returns the filter tag.
Returns a refined Filter node.
Returns the FilterAction of the node.
Returns the number of refined nodes.
Returns the node above.
Sets the node above.

Class FilterException

public FilterException(String)

This class is used to announce an error.

Gives the error message to the system.

Class FilterAction

public void setContent(Vector)

This class updates content.

Sets content for current concept.

25

4.4 Design techniques

• Factory design pattern – The demand to easily be able to implement other kinds
of filters called for a thoughtful design when creating filter. In [1] you can read a
lot about different design patterns used for structured programming. What fitted
well here was the Abstract Factory pattern – “Provide an interface for creating
families of related or dependent objects without specifying their concrete classes.“
Thus, as shown in 4.2 I created a FilterFactory interface that supports the making
of different filters. Only one kind of filter is being produced so far and that is done
by the SimpleFilterFactory, which creates a ConcreteFilter (see 4.2). This also
follows the guidelines given in [1] – letting subclasses decide which class to be
instantiated.

• Looped nodes – When Conzilla reads a new filter of filter neurons, it recursively
creates a tree of connected filter nodes. As the filter is represented by connected
nodes, there is a risk that a node reappears in the filter tree because it was by
mistake connected with a later node. Then the filter is looped and could run
forever. To prevent looped nodes to occur I created a loop check. It summons the
connected nodes in a LIFO (LastInFirstOut) stack when the filter neurons are
being read. If a node is found in the stack before being put there – there is a loop.

• Recursive filter method – When a user has chosen a set of aspects to filter the
content of a concept, only the content components that match all the aspects is
presented. An aspect is matched if any of the keywords of a content component
match the filter tag found in the filter node (= aspect). I used a recursive solution
for parsing the aspects, see method recursiveContent below. First it finds the
top of the filter tree, and then each content component is matched with the current
aspect. If they don’t match the component is thrown away and when the last
aspect have been parsed, the remaining content is presented.

 private Vector recursiveContent(Filter node node)
 {
 if (node.getTop() != null)
 {
 contents = recursiveContent(node.getTop());

 for (int i=0; i < contents.size(); i++)
 {

keywords = (contents.elementAt(i)).getValue("keywords");

 if (keywords == null)
 contents.removeAllElements();
 else if (keywords.indexOf(node.getFilterTag()) == -1)
 {
 contents.removeElementAt(i);
 i = i - 1;
 }
 }
 return contents;
 }
 else
 return contents;
 }

26

Chapter 5

Future Extensions

Through the work of this thesis there has been some discussion about complementary
details that you could include in the filter functionality. Some were implemented,
some weren’t good enough and some were simply too extensive for this thesis. Here
are some possible future filter build-ups:

• Complete filtering on metadata - Not only keywords are relevant when filtering
a content component. There are lots of possible metadata to tag on contents and of
course these sometimes make good filtering alternatives. For example, the author
of a concept, when was it made, what kind of data format is it etc.

• Subfilter - There are limitations in the filtering functionality, as mentioned in 2.1.
For example, you can only pick one path in a filter tree. If you want all the content
that passes two or more different paths you have to filter several times and look at
the results separately. A solution to this problem is to introduce subfilters. The
idea is, for a content to pass a filter node with a subfilter attached to it, the content
first has to pass the subfilter and second the filter tag of the current node. A
subfilter looks like an ordinary filter of connected nodes, but because it is related
as a subfilter it is used in a different way. To pass a subfilter means passing one of
all the possible paths in a subfilter. The example mentioned in 2.1 illustrates this
idea. Suppose you would like the concept piano to be filtered through both the
makers and the history aspects. Then one of the first layer nodes, named X, is
connected to a subfilter and this subfilter has the two nodes makers and history.
Hence, the content that passes either makers or history in the subfilter will be
presented when choosing the aspect X.

• A library of filters - Presently the idea is that the author of a knowledge patch
provides some appropriate filters and the user has the possibility to make his own.
But nevertheless it would be an advantage with a library of pre-produced filters
that could cover some common areas.

• Filter editor - The main purpose of the Component editor is to provide a good
environment for producing different components. As mentioned, it may be used to
produce filters, but for example combining filter nodes to make a tree is a bit
tricky. Well, it would be nice with an environment extensively used for making
filters, because it would simply make it easier and quicker to make them.

27

• History Listener - When trying to filter a concept, Conzilla first looks for a filter
associated to the concept and if there is no one it looks in the current concept-map.
But assume you are browsing a knowledge patch about mathematics and in a
concept-map about geometry there is no filter ever associated with either the
concepts or the map itself. Then it would be nice if the program could check with
higher level maps if there are some filters to use. A possible solution to this
problem is to introduce a History Listener that registers the user’s path among the
maps. Then Conzilla could back-trace this path to a find a fitting filter. One
problem with History Listeners is that complex navigation among different
knowledge patches could result in wrong filters being presented. Therefor you
need quite advanced History Listeners, which perhaps will be too complex to
design.

28

29

Appendix A

Glossary

A.1 Special terms

Here are some special terms used in this thesis.

aspect A concept can be divided up into different aspects. The content describing the
concept will be filtered through these aspects.

concept A concept is a representation of a mental object.

concept-map Visualization of associated concepts and conceptual relationships. Has
similarities with mind-maps.

content An explanation of a concept. It could be a document, a video, sound or
something else that has learning potential and which it is possible to give
reference to.

filter node A representation of an aspect in the model of filters.

filter tree A tree of connected filter nodes.

knowledge patch A set of related concept-maps, covering the same area of
knowledge.

metadata This is a group of data with information about a concept or a content
component. It could describe who the author is, when it was created and some
keywords that describe the object. These keywords are used when filtering the
content.

A.2 Abbreviations

The following abbreviations are used in this thesis.

API (Application Programming Interface) - a set of classes and functions for
performing certain tasks, while hiding the underlying details.

CID (Centre for user-oriented IT design) – an inter-disciplinary competence centre at
KTH. Activities include a three-part collaboration between IT-industry, user

30

organizations and university researchers. For more information, see
http://www.nada.kth.se/cid.

GUI (Graphical User Interface) – the interface to an application that the user sees,
and which uses graphical elements such as buttons and menus for interaction.

IMS (Instructional Management Systems) – a global coalition of academic,
commercial and government organizations, working together to define the
Internet architecture for learning. For more information, see
http://www.imsproject.org.

JDK (Java Development Kit) – a development environment for writing applets and
applications that conform to the Java platform.

UML (Unified Modeling Language) – a language for specifying, visualizing,
constructing and documenting the essences of software systems.

URI (Uniform Resource Identifier) – a URI is a string of characters for identifying an
abstract or physical resource.

URL (Uniform Resource Locator) – a subset of URI that identifies resources via a
representation of a primary access mechanism (e.g., the network locations).

XML (Extensible Markup Language) – a meta language that is used to define
specialized markup languages (like HTML), which can be used to transmit data
in a portable way.

31

Bibliography

[1] Design Patterns: Elements of Reusable Object-Oriented Software, Gamma E.,
Helm R., Johnson R., Vlissides J. – Addison-Wesley Professional Computing
1995

[2] Java in a Nutshell, GNU

[3] Conzilla – Towards a Concept Browser, Nilsson M., Palmér M – Centre for
user-oriented IT-Design (CID-53), KTH, Stockholm, Sweden, 1999

[4] Conceptual Navigation and Multiple Scale Narration in a Knowledge Manifold,
Naeve A. – Centre for user-oriented IT-Design (CID-52), TRITA-NA-D9910,
KTH, Stockholm, Sweden, 1999

[5] The Object Management Group, http://www.omg.org

[6] W3C - The World Wide Web Consortium, http://www.w3.org/

[7] The IMS Project, http://www.imsproject.org/

[8] Java™ Platform Documentation, http://java.sun.com/docs/

[9] A Visual Index to the Swing Components,
http://java.sun.com/docs/books/tutorial/uiswing/components/components.html

[10] Swing API Specification, Swing API Specification,
http://java.sun.com/products/jfc/swingdoc-api-1.1.1/index.html

[11] Conzilla home page, http://cid.nada.kth.se/il/conzilla/default.html

[12] The Conzilla Design, http://www.nada.kth.se/~mini/conzilla-design/conzilla-
design.html

[13] The Unified Modeling Language User Guide, Booch G., Rumbaugh J., Jacobson
I. – Addison Wesley Longman 1999

[14] UML Resource page, http://www.omg.org/uml

