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ABSTRACT:

This work presents a unified, globally based geometric framework, using congruence geometry,
for the description and computation of structure from motion. It is based on projectively invar-
iant tangent information in a sequence of monocular images, i.e. occluding contours under gen-
eral perspective. The strength of the framework is demonstrated by applying it to the case of
translational observer motion, a type of motion that is of great practical importance since it can
be easily implemented with the help of various gyroscopic devices.

Starting with a brief overview of congruence geometry, we show how it can be applied to
vision - leading to a classification of the global line-geometric structure of different target-
observer configurations. Then we illustrate how this approach facilitates explicit book-keeping
of what information that is available in any specific situation, making it possible to parametrise
what is “knowable” and what is “unknowable” from any given observational sequence of
images. It also allows a consistent treatment of degenerate target shape and observer motion by
supporting globally based discrimination of point-like, curve-like and surface-like targets, as
well as detection of rectilinear observer motion.

We then introduce a simple technique for the computation of the direction of motion (‘“Focus
Of Expansion”) as a function of time. In this way we reduce the recovery of translational
observer motion to a problem of determining its speed. From such speed information, we show
how to reconstruct the observer motion - as well as a set of silhouette curves on the observed
target - and illustrate with a few simulated examples. Applying this FOE-reconstruction
techinque to a stationary curve target, we present an algorithm for matching the individual
points on the curve between the consecutive time frames of its recorded silhouette, without any
speed information at all.

The FOE-reconstruction method is then generalized from the real to the complex domain,
showing how to combine conjugate complex geometric elements in order to obtain real geo-
metric information concerning the direction of observer motion. We conclude by applying this
method to real image data.

KEYWORDS: Translational observer motion, Line congruence , Focal surface, Computing the
Focus Of Expansion, Point matching on curves, Global structure from motion.
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Introduction

1 Introduction

The problem of reconstructing geometric information in a scene from a sequence of mobile
observations has been intensely studied within the computer vision community. Such informa-
tion - notably target structure and observer motion - can be used for the purpose of object rec-
ognition and for various forms of geometric reasoning, e.g. motion planning and obstacle
avoidance. Within this context, structure and motion from the outlines of space-curves or
curved surfaces constitutes a difficult problem that has attracted increased attention. Among
the early contributions to this field, Koenderink [(1), (2)] has related the curvature of an appar-
ent contour to the Gaussian curvature of the observed surface; Giblin and Weiss [(3)] have
worked on the positioning of objects from their occluding contours, assuming planar camera
motion - a restriction that was removed by Vaillant in [(4)]. Among the later work we mention
Cipolla [(5)] and Cipolla and Blake [(6)], who showed how to recover the geometry of the tar-
get surface from the deformation of its apparent contours. They assumed that the observer
motion is known and used the so called epipolar parametrization, which is based on the classi-
cal conjugacy condition between a contour generator (rim) of a surface and the corresponding
tangential ray of sight. Related work has been done by Vaillant and Faugeras [(7)], who used
three closely related images of the surface rim - taken under known observer motion - in order
to recover the local curvature properties of the surface up to second order. Also, for the case of
rigid curve targets, Faugeras and Papadopoulo [(8)] have shown how to use the spatio-temporal
image of a space curve in order to derive a constraint on the viewer motion from second order
spatio-temporal derivatives. Giblin and Weiss [(9)] have given criteria for the breakdown of the
epipolar parametrization and Cipolla, Astrdm and Giblin [(10)] have used such points (which
they call frontier points) in order to reconstruct the observer’s motion from the occluding sur-
face contours. Kutulakos and Dyer [(11)] have formulated rules to control observer motion so
as to connect local surface patch reconstructions in a global reconstruction process of the sur-
face. Zhao and Mohr [(12)] have used B-spline surface patches, reconstructed with the aid of
the epipolar parametrization, in order to achieve global reconstruction under known observer
motion.

The underlying theme of these developments is to use locally based (i.e. differential) methods
in order to achieve reconstruction under more and more general forms of observer motion. In
this paper we advocate a different approach. Restricting the observer motion to translations, we
use a classical line geometric framework (notably congruence geometry) as a means to describe
the geometry of the various target-observer configurations. Our framework is based on the
<TargetlObserver> congruence, which was introduced by Naeve in [(13)]. This is a type of
congruence (i.e. two-parametric family of lines) that appears naturally in scene reconstruction
problems in vision. It corresponds to a sequence of observations of a curve- or surface-like tar-
get by a moving, monocular observer. This congruence can be decomposed into two families of
developables that carry information concerning the global geometry of the target surface as
well as the motion of the observer. A great advantage of this approach is that it does not make
any a priori assumptions about the shape of the observed target, thereby allowing a uniform
treatment of various types of targets - such as lines and curves, as well as polyhedral and
smoothly curved surfaces.
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The restriction to translational motion is natural since it is performed by biological observers in
many situations - notably by hunting predators. When e.g. a cheetah is hunting, it is easy to
observe how every muscle in its body cooperates in order to keep the motion of its head trans-
lational - a fact which greatly facilitates the computation of the relative direction of motion of
its prey. Moreover, such translationally balanced motion can be easily implemented in machine
vision systems by the help of gyroscopic devices, as demonstrated e.g. by the so called “steady-
cam” cameras systems that are becoming increasingly popular within the television industry.

2 Background

In this chapter we give a brief presentation of some important concepts of classical line geome-
try - notably the complex, the congruence with its focal surface, the ruled surface and the
developable (surface). These concepts were once well known and much used within the math-
ematical community, and they form the geometrical basis upon which our theory rests. The
reader is referred to Naeve [(13)] or Eisenhart [(14)] for more information on this subject.

A smoothly parametrized family of lines in 3d-space is called a ruled surface, a congruence or
a complex, if it depends respectively on 1, 2, or 3 parameters. Examples of these three types are
given e.g. by the generator lines of a /-sheeted hyperboloid, the normals to an arbitrary sur-
face and the tangents to an arbitrary surface. These examples are all special in the sence that
they are highly non-generic: A 1-sheeted hyperboloid can be considered as a ruled surface in
two different ways, which is characteristic of quadric surfaces, the normals to a surface form a
special type of congruence, called a normal congruence, and the tangents to a surface form a
special type of complex, called a tangent complex. The complex of lines that intersect a fixed
curve is called a secant complex - unless the curve itself is a line. In this case, the complex of
intersecting lines is known as a singular complex.

A generic ruled surface is called skew. This term refers to the fact that, in the case of a skew sur-
face, the magnitude of the closest distance between neighboring generators is of the first order,
i.e. the same order as the parametric difference itself. We say that neighboring generators of a
skew surface do not intersect. Now, it is an interesting - and somewhat surprising - fact, that
when this order changes, it suddenly jumps from one to (at least) three. When the closest dis-
tance between neighboring generators is of the third order (or higher), one says that neighbor-
ing generators intersect, and in this case the ruled surface is called developable. This
terminology can be somewhat confusing, since the term developable in general refers to a
(smooth) 1-parameter family of planes. These two modes of usage are, however, non-conflict-
ing, since on the one hand, the envelope of each 1-parameter family of planes can be considered
as generated by the 1-parameter family of lines that form their characteristics, i.e. intersections
of neighboring elements, while on the other hand, the lines of a 1-parameter family with inter-
secting neighbors are all tangent to a certain curve (see below), and therefore must generate the
same surface as the 1-parameter family of osculating planes to this curve.

As a surface, a developable consists of two differentiable parts, joined together by a sharp edge
curve, along which the surface does not possess a tangent plane. The lines of the developable
are all tangent to the curve describing this edge. It is called the edge of regression of the devel-
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opable. It can be easily shown [(14)], that if the closest distance between neighboring genera-
tors is of order higher than three, then the edge of regression of the corresponding developable
is a plane curve.

A generic (= skew) ruled surface is (locally) smooth without any sharp, non-differentiable edge
curves. However, on each ruled surface there is a striction curve, which is the geometric locus
of the footpoint on each generator, corresponding to its closest distance to its neighbors. If a
skew surface is continously deformed until it becomes developable, then its striction curve is
transformed into the edge of regression of the final result.

Two important special types of developables are given by the cone and the cylinder. A cone is

a developable whose edge of regression has contracted to a point, called the vertex, and a cylin-
der is a cone whose vertex is located at infinity. Hence the difference between a cone and a cyl-
inder is of a purely metric nature.

A congruence is a smooth 2-parameter family of lines. In general, these lines envelope two sur-
face-patches, S, and S,, known as the two focal sheets of the congruence. Taken together they
constitute its focal surface. A congruence can be represented by its two focal sheets, in which
case we denote the congruence by <§,1S,>. The lines of the congruence <S,1S,> are precisely
the lines that are tangents to both S, and S,. The focal sheets of a congruence can degenerate in
various ways. If we consider “dimensional degenerations” of the surface as a point manifold,
each surface patch can shrink and degenerate into either a curve or a point. It is easy to see that
if one of the focal sheets has become a point, then the other focal sheet is forced to degenerate
into the same point, if the lines of the degenerated configuration are to remain a congruence.
This creates a <PointlPoint> congruence better known as a star, i.e. the set of lines on a point.
If one focal sheet is non-degenerated, while the other has degenerated into a curve, we have a
<SurfacelCurve> congruence, which is call (singly) directed. In the case of a <CurvelCurve>
congruence, both focal sheets are curves, and the congruence is called doubly directed.

Below, we will have reason to consider some of the dual types of degenerations to the ones pre-
sented above, i.e. dimensional degenerations of the focal surface as a plane manifold. Consider
a degeneration process that transforms a surface (patch) into a curve (segment). In this degen-
eration process, a 2-parameter family of points is collapsed into either a 1-parameter family of
points (curve) or a single point. Hence, the dual degeneration process can be described by the
following procedure: A 2-parameter family of planes is collapsed into either a 1-parameter
family of planes or a single plane. In the latter case, the corresponding <PlanelPlane> congru-
ence is better known as the set of lines in a plane, or a plane system of lines. In the former case,
the corresponding focal sheet degenerates into a developable. Such a <SurfacelDevelopable >
congruence is called (singly) developed, while a <DevelopablelCurve> congruence is termed
developed directed. Finally, in agreement with the above established terminology, a <Develop-
ablelDevelopable> congruence is called doubly developed.

As a motivation for these subtypes, we will see below, that an example of a singly directed con-
gruence appears naturally in vision as what we call the <TargetlObserver> congruence, corre-
sponding to a sequence of observations of a moving, surface-like target by a moving, point-like
observer. If the observer is looking at a stationary curve instead of at a moving curve or a sur-
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face patch, then the corresponding <TargetlObserver> congruence is in fact doubly directed.
The developed directed type of congruence also enters naturally into the considerations below.
It is the subtype of the <TargetlObserver> congruence, that corresponds to a moving line-like
target, which is recorded by a moving point-like observer.

2.1 Representing a Congruence by its Developables

S Sy
I(s,p)
D(s)

D(®)

Figure 1

Consider a congruence <S§,15,> which is neither a star, nor a plane systeml. Then it is a fact of

fundamental importance [see ...] that its lines can be uniquely partitioned into two 1-parameter
families of ruled surfaces {D,(?) : t,<t<t,} and {D,(s) : 5,<s<s,} in such a way that each mem-
ber surface is developable. Hence, each line (s, ) of the given congruence is the intersection of
one developable from each of the two families:

[(s,t) = D, () N D,(s). (1)

This configuration is depicted in Figure (1). Geometrically, a developable is the locus of a -
parameter family of planes. Hence, each developable D, has a natural representation given by

Developable = UPlane (x) (2
X

Applying (2) to the developables (1) of a congruence, we get

D](Z) = UDI(S’I) s

®3)
D,(s) = UD,(s,1) .

The two 2-parameter families of planes D,(s, f) and D,(s, ) are called the focal planes of the
congruence. Since D, (s, t) is tangent to D,(¢) , and D,(s, t) is tangent to D,(s), it follows from
(1) that these two planes must intersect in the line I(s, 7), i.e. we can write

I(s,t) = D,(s,t) ND,(s,1) @

1. In the sequel, we will always exclude stars and plane systems from the congruences under study, unless we explicitly state
otherwise.
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In the case of a normal congruence, the two families of developables always consist entirely of
real surfaces. This is not always true for a general congruence, where the developables of one

family may well be complex conjugates of the developables of the other!.

Each developable of the same family has its edge curve on the same focal sheet. Moreover, this
developable is tangent to the other focal sheet along a curve which is conjugate to the directions
given by the edge curves of the developables of the other family. Denoting the corresponding
curve net by the term edge-conjugate, we can summarize this configuration the following fun-
damental:

Fact 1: To each non-degenerated focal sheet of a given congruence there is associated an
edge-conjugate curve net, corresponding to the two families of its developables.

conjugate

q)l(svt) = D](S,t)

(PZ(SJ) = DZ(SJ)

Figure 2

Figure (2) illustrates the focal sheet representation <S,15,> of a given congruence. Starting from
the two families of developables, there are two geometrically natural representations of each

focal sheet as the locus of a 1-parameter family of curves. We will call these representations the
edge representation respectively the conjugate representation of the focal sheets, and we write:

(8,15 = (U D, (s)|UD, (1) = UD, (5)ID, (1)) 5)
respectively
<SI‘S2>0011jugat€ — <UD1 ([)|U D2(S)> = U<D1 (l)‘Dz(S)> (6)

1. However, for the < Target | Observer > congruence that we will define below, the two families of developables will always
be real.
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3 Applying Congruence Geometry to Scene Analysis

In this chapter we describe the observational configuration that forms the geometric foundation
for the application of congruence geometry to vision. Introducing some appropriate notation,
we arrive at the classification (15) of the global line-geometric structure of the various target-
observer configurations that can appear in the monocular observation of lines, curves and sur-
faces under translational motion.

3.1 The <Target | Observer> Configuration

Consider a point like observer O, that is moving along an (unknown) curve T'. While it is occu-
pying the successive positions O(f) = I'(¢), the observer is recording a motion picture of the sil-
houette S(¢7) of a (possibly) moving target 7(¢), using a monocular (“pin-hole”) camera that is
pointing in a fixed direction. We can think of the silhouette S(¢) as being recorded either on a
spherical screen with center O(¢) - e.g. the gaussian sphere Si)m - or on some plane screen ()

that is rigidly attached to O(¢). In the discussion below, we will take n(¢) to be the tangent plane
to the gaussian sphere at its north pole, as illustrated in Figure (3).

1103)

Figure 3

Keeping the direction of the camera fixed during the recording of the film is equivalent to the
following geometric condition: During the motion of O, both S? and = are translated through
space without any accompanying rotation, i.e. their directions remains fixed in the surrounding
3d-space. In practice, this can be achieved e.g. by the aid of an inertial navigational system
based on the kind of gyroscopic compass employed by modern airplanes.
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We will assume that the moving target 7(f) consists of points, lines, curves or surfaces. The tar-
get curves and target surfaces are assumed to be piecewise smooth, i.e. each target curve must
possess a unique tangent line, except possibly at a finite number of points, and each target sur-
face must possess a unique tangent plane, except possibly at a finite number of points and along
a finite number of curves.

In the target-observer interaction process described above, let us consider the observation event
at time . In this observation event, each point of the observed target silhouette S (r) corre-
sponds to a line through the point of observation O (¢) . The totality of these lines will be
denoted by (T (1)|0 (1) ).

Unless we explicitely state otherwise, we will always assume that each target 7 (r) is either a
line, a curve, or a surface patch. In this case, the observed silhouette S (7) is a piecewise smooth
curve, corresponding to an observed silhouette cone C (1) ,

Cs(t) =(T(n)]0(1)) , )

with its vertex on the point O (¢) . Therefore, to each moment of time ¢, the corresponding
observation event associates a 1-parameter family of lines [, (s, r) that generate the observed sil-

houette cone C () , that is
cs(n) = Uls(s, ). (8)

However, what the observer actually records is only the directions of these lines, forming the
recorded silhouette cone C(1) ,

Cp (1) = Udirection(lS(S, ), ©

which is registered either as a curve on the gaussian sphere S20 () » asin Figure (4), orasa

curve in the plane n(¢), as in Figure (3).

Hence, to each observation sequence there is naturally associated a 2-parameter family of lines,
forming a I-parameter family of observed silhouette cones,

Definition 1: The 1-parameter family of observed silhouette cones C,(r) will be called the far-
get observer configuration and will be denoted by (7|0) .

Introducing the notation (7 (¢)) and (O (z)) for the set of lines that are tangent to the target
respectively the observer at time ¢, we thus obtain

@@=Q%ﬂﬂ#wWMHQUMMWM% (10)

8 of 30 Structure From Translational Observer Motion



Applying Congruence Geometry to Scene Analysis

Note: In general, the <710> configuration is a 2-parametric line family. However, if the target
consists of a point, then the observed silhouette cone reduces to a single line, and the
<TNO> configuration reduces to a I-parameter family of lines.

As described above, a 2-parameter family of lines is known in geometry as a congruence, while
a 1-parameter family of lines is called a ruled surface. Hence, we can summarize in the follow-
ing:

Fact 2: If the observed target is a line, curve or surface, then the <T10> configuration is a
congruence, and if the observed target is a point, the <7T10> configuration is a ruled
surface.

It is clear that all the lines of a <710> congruence must pass through the orbit curve T of the
observer O. Hence, a <T10> congruence is always directed with the curve like focal sheet iden-
tical to the observer’s orbit curve I'. A schematic picture of the developables of a <710> con-
gruence is shown in Figure (4).

Figure 4

Definition 2: For a given <710>-congruence, the family of conical developables D, (1) will
be called its target developables, and the other family D, (s) will be called its
observer developables.
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3.2 Specializing a General Congruence into a <710> Congruence

We will now consider the question of how a <710> congruence is related to a general <S,15,>
congruence. The best way to understand this is to consider the general congruence discussed
above and observe what happens when one of its focal sheets (say §S,) “shrinks down” into a
curve. Referring to Figure (2) and Figure (4), it is clear that we can describe the effects of this
transformation as follows:

D, (1) = Cy(1)
conjD,(s) =T | (11)
edgeD (1) = O (1)

This surface --> curve “shrink down process” results in the directed <710> congruence, and it
follows from (11) that the degenerated focal sheet, i.e. the observer’s orbit curve T can be
expressed in the following two ways:

m Dz(s) s

S0<S<Sl

UedgeD, (1) = Jo(r) .

t t

r

(12)
r

Summarizing the above discussion, we can conclude the following:

Fact 3: The <7T10> congruence given by (10) corresponds to the conjugate-edge representa-
tion (6) of a general congruence, where the second focal sheet has degenerated into
the observer’s orbit curve.

Now, the silhouette curve S (¢) is geometrically defined as the part of the intersection between
the neighboring silhouette cones C,(r) and C, (7 + ) which does not contain the observation

point O (1) I Hence, denoting by A\B the set of members of A that are not members of B, we
obtain

S(r) = {Cs(r) NCg(r+0) }\(O(1)). (13)

A finite approximation to this configuration for a quadric surface target is shown in Figure (5).
The hyperbola shown in the left part of Figure (5a) gives two lines on O (¢) in the limit. The sil-
houette curve S (¢) is shown in Figure (5b). Summarizing the above discussion, we can con-
clude the following

Fact 4: For a <T10> congruence, each target developable D, (7) is tangent to the target T (r)
and has its vertex on the observation point O () . Each observer developable D, (s)

contains the orbit curve I of the observer, and has its edge on the target 7 (¢) if the lat-
ter is stationary, 1.e. if T (1) =T (¢,) .

1. Ttis clear that this intersection also contains a finite number of lines that intersect in the point O (7) .
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Figure 5

The relation between a moving taget and the edges of the corresponding observer developables
is of course not so simple and depends on the shape as well as the form of motion of the target.

3.3 The Global Structure of the Various <710> Configurations

Let us introduce the notation (7) for the geometric locus of lines the are tangent to the target
T (t) for some moment ¢ during the time interval of observation, that is

(ry = U(T(n) . (14)

In (15) we present a summary of the global line-geometric structure of the various forms of
<T> and <T10> configurations that can appear in the process of observing a point-, line-, curve-
or surface target, separating between the case of a stationary and a moving target. The deduc-
tion of these configurations is straight-forward and follows directly from the previous discus-
sion of the <710> configuration. The notation used in the case of a stationary line target
requires an explanation. The target focal sheet of the congruence (FixedLine|O) is identical to
the FixedLine itself. Since a line can be regarded both as a 1-parameter family of points (ray)
and as a 1-parameter family of planes (axis) it follows that the congruence (FixedLine|O) is both
DevelopedDirected and DoublyDirected - a geometric structure that we have denoted by
DevelopedDirected? .
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Target (Target) (Target/Observer)

FixedPoint StarCongruence Cone

MovingPoint UStarCongruence (1) RuledSurface
t

FixedLine SingularComplex DevelopedDirected*Congruence

MovingLine USingularComplex(t) DevelopedDirectedCongruence (15)
!

FixedCurve SecantComplex DoublyDirectedCongruence

MovingCurve USecantComplex(t) DirectedCongruence
t

FixedSurface TangentComplex DirectedCongruence

MovingSurface U TangentComplex(t)  DirectedCongruence
t

In (15) we have regarded each configuration as a line manifold. If, instead, we consider the geo-
metric locus of the target as a point mainfold, as well as emphazise the point manifold structure
of the focal sheets of the <710> congruence, we get the following modification of (15) :

Target (Target) . . (Target|Observer)
FixedPoint Point
MovingPoint Curve
FixedLine Line (Line|Curve)Congruence
MovingLine RuledSurface (Developable|Curve)Congruence (16)
FixedCurve Curve (Curve|Curve)Congruence
MovingCurve Surface (Surface|Curve)Congruence
FixedSurface Surface (Surface|Curve)yCongruence
MovingSurface Solid (Surface|Curve)Congruence
4 Geometric Properties of the <7T10> Congruence

Let us denote the target- and observer focal sheets of a <710> congruence by <71 and 10>
respectively. From the information summarized in (16) we can draw some interesting conclu-
sions. We have already pointed out that if the target is a point, we do not get a <710> congru-
ence at all. Since we will make heavy use of the geometric properties of congruences in the
reconstruction process presented below, we exclude point targets from further considera-
tion.Now, even if we were somehow able to completely reconstruct the <710> congruence, we
would still only get our hands on the target focal sheet. This is all that is “knowable” about a
target from an observation sequence of it, while the manifold that it actually generates in space
is beyond recovery (= unknowable) without some form of additional information. It is clear that
all the targets that generate the same target focal sheet are indistinguishable (= equivalent) with
respect to the given observational sequence, since they generate the same <710> congruence.
We express this as the following

Fact 5: Two targets 7, and 7, are indistinguishable (i.e. equivalent) with respect to a given
observational sequence if and only if they generate the same target focal sheet.
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4.1 Line Target

We mentioned in connection with (15) that if the target is a stationary line, then the target focal
sheet is identical to the target line itself, thatis 7 = (7]. If, in addition, the observer is subject to
linear motion, then the resulting <710> congruence has two lines as focal sheets, and therefore
both the target- and observer developables reduce to plane pencils (Figure (6)). Such a congru-
ence is termed linear, since its lines can be described by two linear equations in projective line
coordinates.

Figure 6

A more interesting situation occurs when the target is a moving line. From (16) we see that this
line generates a ruled surface, while the target focal sheet of the <710> congruence is a devel-
opable. This situation is depicted in Figure (7), which shows two different views of the same
configuration

Figure 7

By Fact (5), this developable is all that is knowable about a moving line target from a given
observation sequence of it, while the ruled surface that it actually generates in space is unknow-
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able. All the moving lines /(r) that generate the same developable are indistinguishable with
respect to the given observational sequence. It is clear that two moving lines /(r) and

I' () generate the same developable if and only if they form the same “plane of observation”
together with the point O () , i.e. if and only if

I(t)y vO(r) =1'(t) vO(1r) 17)

Figure 8

An important special case occurs when the motion of the target line /(¢) is a pure translation,
i.e. when the target line is moving without changing its direction d (Figure (8)). In this case all
the planes of observation =, = [(z;) v O (#,) must contain the direction d, and therefore they will

be recorded on the gaussian sphere as a pencil of planes with axis d. Moreover, the developable
target focal sheet will take the shape of a cylinder, whose generators correspond to the succes-
sive positions of the moving line, i.e.

(rl = U1 @) (18)

Hence, in this case, the successive positions of the target line in space are completely recovera-
ble from the <7T10> congruence. We summarize this configuration in the following

Fact 6: Under translational observer motion, a target line that is subject to some other transla-
tional motion will be recorded on the gaussian sphere as a pencil of planes with the
axis identical to the direction of the moving target line. The target focal sheet is a cyl-
inder, whose line generators correspond to the successive positions of the moving tar-
get line in space.
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4.2 Curve or Surface Target

Having discussed the case of point- and line targets above, we now turn to the case of target
curves or surfaces. We first consider the case when the observer motion is linear - i.e. the
observer is translated along a straight line. Since each of the observer developables D,(s) con-
sists of lines intersecting their neighbors as well as another fixed line (the observer’s orbit curve
I), it follows that all these lines must lie in the same plane. Hence, each observer developable
consists of the tangents to a plane curve, and from the first equation of (12) it follows that the
corresponding planes form a pencil with the observer’s orbit line as axis. We summarize these
observations as

Fact 7: Under linear translational observer motion, each observer developable is a tangent
surface of a plane curve. The totality of these planes form a pencil with its axis on the

observer’s orbit line!.

This fact can be used to discriminate between linear and non-linear observer motion under
observation of general targets, provided that we can somehow reconstruct the spherical repre-
sentation (= gaussian image) of the observer developables. We will see below how this can be
achieved in the case of a stationary non-linear target, i.e. a stationary target curve or surface.

5 Reconstructing the <710> Congruence

We will now consider the fundamental problem of reconstructing the <710> congruence, given
the spherical representation of its target developables. We recall that the target developable
D, (1) is identical to the observed silhouette cone C(r) , which is the cone on the silhouette

curve S(r) with vertex O (¢) , given by (7) or (8), and that the spherical representation of
C, (1) 1s the recorded silhouette cone C, () given by (9). It follows that C¢(r) is identical to the

translation of C,(¢) from the origin to the point of observation 0 (r) ,i.e.
Cy(t) = Translate(Cp (1), 0 (1)) (19)

Let us assume that we have somehow aquired knowledge of the point of observation O (z) .
Then, from (19) we can reconstruct C,(¢) , and thus obtain the <710> congruence as a 1-

parameter family of cones. Hence, from (13), we can reconstruct the silhouette curves S (¢) ,
and since, by definition of S (¢) ,

Cs(1) =(T(n]0(1)) = (T(1))N(O(1)) =

(20)
= (S(0]0(n) = (S(n)yN(o()) .

we know that S(r) must be a curve on the target 7 (¢) . Hence, if the target is stationary, we
have obtained a 1-parameter family of curves on the target - thereby gaining some information

1. This is of course true also for a line target, as illustrated in Figure (6).
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about its shape. If the target is moving, we have instead a 1-parameter family of curves on the
envelope that the moving target sweeps out over time. This information indicates what region
of space to stay away from at a certain time in order to avoid colliding with the moving target.
It does not in itself tell us much about the shape of the target, but it could be combined with
other observations in order to generate such target shape information.

Now, recall from (8) and (11) that

Co(r) = Ul(s,1) = D, (1) . (1)

Hence, by reconstructing the observed silhouette cones C, () , we have gained information

about the target developables D, (r) . What can we say about the observer developables D, (s) ?

Denote by /. (¢) the tangent line to the observer’s orbit curve at the point O () . Knowing the

latter point as a function of 7, the line /,.(r) can be reconstructed as
Ip(1) = (0(1)) N (O0(1+9)). (22)

Recall from (3) the definition of the focal planes D, (s, r) . Since D, (s, 1) is tangent to the
observer developable D, (s) , this focal plane must in fact contain the line /. (z) . Hence, it fol-
lows from (4) that

D, (s,1) = g (s, t) Plane (VIp (g) Plane, (23)
and therefore we can reconstruct the observer developable D, (s) as

D,(s) = UD,(s,1). (24)

Moreover, from Fact (1) and Fact (3), we know that the edges of the observer developables
form a 1-parameter family of curves that are conjugate to the silhouette curves S () on the tar-
get focal sheet. Hence, if the target is stationary, we obtain from (21) and (24) a conjugate net
of curves on the targetl. This is the epipolar parametrization introduced by Cipolla in [(5)],
where he makes use of it in order to reconstruct the geometry of the target surface.

Let us summarize what has been achieved so far. Starting from a knowledge of the point of
observation O (t) , we have aquired complete information about the two families of developa-
bles of the <710> congruence. We will now address the question of how we can deduce the nec-
essary information about the location of the point O (r) . Writing O (¢) for the position vector of
the point O (r) , we have

0(1) = 0(1,) +f:0'(1:)d1:, (25)

1. If the target is moving, we obtain instead a net of curves on the target envelope.
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where
O' (t) = velocity(t) = speed(t)direction(t) (26)
is the velocity vector of the observer at time .

Note: In the following we will always assume that all targets are finitely extended and totally
visible, and that the target and the observer are translated relative to each other. More-
over, in the term envelope of a family of curve segments we will include the singular
part, i.e. the locus of singular points such as cusps or endpoints of the curve segments.

Before proceeding further we will introduce some useful terminology. At a certain moment ¢,
the relative motion of target and observer will be called transversal, if the recorded silhouette
curves at times ¢ and +A have at least two common (real) tangents for all small enough positive
A, i.e. if the envelope of the recorded silhouette curves has at least two real tangents at time .

Such a situation, for a stationary target, is depicted in Figure (9). The notation used in this fig-
ure corresponds to an infinitesimal time difference, A = &, but - for the moment - let us con-
sider the two observed silhouette cones C,(r) and C,(r+98) as being finitely separated in

space. Now, imagine that we take a plane v through the line that joins the points O (r) and
O (r+9) and turn the plane vy around this line until it touches the target 7' (z,) at the point P, .

Denoting the corresponding plane by v, , we obtain
Y, =0() vO(t+d) vP. (27)

Since the line O (¢) v P, is tangent to T (7,) and passes through O (r), this line must belong to
C, (1), and for the analogous reason the line O (7+8) v P, must belong to Cg(7+6). It follows
that the plane vy, must be tangent to both of the cones C(r) and C,(z+8) . Moreover, this con-

struction can be repeated by turning the plane ¢ in the opposite direction until it touches the
target in another point P,. For the same reason, the corresponding plane vy, must also be tan-

gent to both of the cones C,(r) and C,(r+) . Hence we can summarize in the following:

Fact 8: If the target and observer are subject to transversal relative motion, then for small
enough positive A, the observed silhouette cones C(r) and C,(7+A) have at least

two common tangent planes.

We are now in a position to prove the followingl:

Fact 9: Under transversal observer motion relative to a stationary target, the direction of the
observer’s motion (the so called Focus Of Expansion) at time ¢ is identical to the lim-
iting position, as A — 0, of the point of intersection between the common tangent lines
to the two recorded silhouette curves at time ¢ and time #+A.

1. The author has recently discovered that Fact 9 is implicit in a paper by Cipolla , Astrém and Giblin [(10), Property 1].
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Proof:

Note:

The situation is illustrated in Figure (9). Let the recording in the plane = (¢) of the sil-
houette curve S(r) be denoted by f(¢), andlet v, and y, denote the two common

tangent planes to the observed silhouette cones C(r) and Cg(z+8) constructed in the
proof of Fact (8). (These planes exist, since the relative motion is assumed to be
transversal.) Moreover, let C2(r) denote the translation of C¢(r) along the observer’s
orbit curve from O (1) t0 O (t+38), and let f,(r) = C3(r) Nw(r+39).

Now, since C?(r) is the translation of C¢(r) along the observer’s orbit curve, it must
be identical to the recorded silhouette cone at time ¢, i.e. C3 (1) = C,(r). Therefore,
the two curves f,(r) and f(r+8) are identical to the two recorded silhouette curves

at times 7 respectively 8. Moreover, since the translation takes place along the line
I (1) =y, ny,, it follows that the two planes ¢, and y, must remain tangential to

the translated cone C?(r). Hence, ¢, and vy, are tangent planes to both C¢(7) and

C2 (1) , and, by construction, also to C,(z+3).

Consider now the two lines 7, = ¢y, an(r+8) and I, = y, an(r+9). Since they are
located in v, respectively y,, it follows that they must intersect on the line /.. (),
and also that they must be tangent to the cones C¢(¢+8) and C?(r) . Furthermore,
since [, and [, are located in the plane = (¢ +8), it follows that they must be tangent to
both of the recorded silhouette curves f (r+98) and f,(r). Therefore, we can con-
clude that the directions of the lines 1, and 1, are constructible from the recorded

image data alone, as common tangents to two successively recorded silhouette curves.
Since the direction of the observer’s motion, i.e. the Focus Of Expansion, is given by

FOE(t) = I.(t) Am(t+98) =1, nl,, (28)
we have obtained a proof of Fact (9). <<>>

For surface targets with a simple enough geometry, such as e.g. convex surfaces, the
transversality condition on the relative motion of target and observer discriminates
between colliding and non-colliding motion. Transversal motion corresponds to non-
collision (moving “around” the target, while non-transversal motion corresponds to col-
lision (moving “towards” or “away from” the target. This can be seen from the fact that
motion along a generator of the observed silhouette cone corresponds to tangency of the
recorded silhouette curves. Hence this “grazing” motion, which separates colliding
from non-colliding configurations corresponds to the boundary between transversal and
non-transversal motion. For more complicated surface shapes the correspondence
between transversality- and collision conditions is an interesting problem that merits
further study.
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mt(t+90)

FOE(t)y =

Figure 9

Combining Fact (9) with (25) and (26) we can draw an interesting conclusion. Any hypothesis
regarding the speed of the observer’s motion and the location of the observation start point
O (t,) constitutes the necessary input to a reconstruction process of the observer’s position

O (t) as a function of time. Moreover, from the fundamental theorem of calculus, we know that
variation of the constant vector O (1,) gives rise to congruent observer orbit curves, and there-

fore, by (19) and (24), to congruent reconstructions of the target and observer developables of
the <710> congruence. Hence we can state the following

Fact 10: Under transversal motion of an observer relative to a stationary target, the shape of
the observer’s orbit curve - as well as the shape of a net of silhouette curves and their
conjugates - are reconstructible, knowing only the speed of the observer as a function
of time. Knowing also the position of the starting point of observation, makes it possi-
ble to reconstruct the position of these curves in space.

6 Simulated Examples of <710> Congruence Reconstruction

Following the theoretical discussion presented above, we will now take a look at some exam-
ples examples of <710> congruence reconstruction. In this section, the examples will be com-
puter simulated in Mathematica®, while in the next section we will work with real image data.
For reasons of simplicity, the target will always be chosen as a stationary quadric surface, in
which case the intersection of tangent cones can be handled analytically.
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6.1 Transversal Observer Orbit Curve

In the first example, shown in Figure (10a), the stationary quadric surface target is observed
transversally by an observer moving with constant speed along a circular helix orbit curve T.
Figure (10b) shows a finite sample of the recorded silhouette curves, where the dots represent
the intersections of common real tangents to neighboring curves. Hence, by Fact (9), the dotted
circle represents the direction of motion as a (discretely sampled) function of time. The circular
shape of the dotted curve in Figure (10b) is due to the fact that the circular helix has its axis in
the vertical direction, and therefore the unit tangent to this curve must trace a circle on the
Gaussian sphere and therefore also in the (horisontal) recording plane. Moreover, the equal
spacing of the dots is a consequence of the constant speed of the observer. Starting from a cor-
rect “guess” of the observer’s speed and starting position O (7,) , the result of reconstructing 40

points of the observer’s orbit curve is shown as the dotted curve of Figure (10c). A factor 4 sub-
sample of these points, as well as the corresponding reconstructed silhouette curves are shown
in Figure (10d). Since the reconstruction algorithm assumes that the observer’s velocity is con-
stant between each of the sample points, the error is accumulative.

Figure 10
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Figure (11) illustrates the sensitivity of the reconstruction process with respect to variation of
observer speed. Reconstruction with 60 points is shown with correct speed in Figure (11a), and
with a speed error of respectively +2.5% in Figure (11b), -5% in Figure (11c) and -10% in Fig-
ure (11d).

=

\\\‘Q
T

mues)

N
A

Y
'n‘!.'
]

R
HITTINY
/1]
[

/
1/

/

i1
i
I

1

Figure 11

6.2 Non-transversal Observer Orbit Curve

Figure (12) illustrates the complications that are introduced by a non-transversal observer
motion. Here the observer is moving along a twisted cubic which is located so that the initial
motion is transversal. However, at the point A the transversality condition is violated, and the
observer starts moving towards the target. Therefore, the common tangent planes ¢, and vy, in

the proof of Fact (9) are no longer real, and the algorithm for reconstructing the direction of
motion breaks down at this point. At a later moment (point B) the motion again becomes trans-
versal, and the reconstruction process can be started again, given a correct input of speed and
initial observer position.

This illustrates the serious limitations of the transversality condition to the reconstruction algo-
rithm as presented above. In order to be practically useful, we should be able to allow generic
observer motion, and extend the algorithm to reconstruct also the non-transversal part of the
observer’s orbit curve. In the case of quadric surface targets, a method for achieving this will
be presented below. This method can be naturally extended to polynomial surface targets, but
the details of this extension will not be discussed here.
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Figure 12

Our method is based on the fact that, for a quadric surface target, the tangent planes y, and v,
will be complex-conjugates of each other, and so will the lines /, and /,. Hence the line of
intersection of vy, and vy, will still be real, and since we have made no special reality assump-

tions in the proof of Fact (9), the conclusion is still valid, provided only that we modify it to
account for this complex-conjugacy. We formulate this as

Fact 11: Under translational observer motion relative to a quadric target, the direction of the
observer’s motion at time ¢ is identical to the limiting position, as A — 0, of the point
of intersection between one of the two pairs of complex-conjugate common tangent
lines to the two recorded silhouette conics at time ¢ and time #+A. If there is a real pair
of such common tangents, then their point of intersection represents the correct direc-
tion, and in this case the corresponding observer motion is transversal.

Fact (11) illustrates the additional problem. Due to the fact that the motion is non-transversal,
the recorded silhouette curves will be conics with no real points of intersection, and since two
such conics have (in general) four common tangent lines that are complex-conjugates in pairs,
we no longer have a unique reconstruction point for the direction of observer motion. Instead,
we have two candidates, one of which represents the correct direction, whereas the other is a
“phantom solution” introduced by the complexity of the situation. However, as will be seen in
the next section, by considering the global configuration of recorded silhouette curves, we can
exclude the false solution for the following reason: The direction of motion must be closest to
the part of the contours where the curves are most densely packed (See Figure (14)).

Figure (13) illustrates the three different ways that two generically situated conics can intersect,
corresponding respectively to four, two and zero real common tangents. It is clear that only the
last two cases can appear as neighboring recorded silhouette curves in the process of observa-
tion of a stationary quadric surface target, Figure (13b) corresponding to transversal and Figure
(13c) to non-transversal observer motion. Figure (13) also shows the real points of intersection
between pairs of common tangent lines, corresponding to pairs of real or complex-conjugate
common tangent lines of the two conics. The real tangent pairs are distinguished by the fact that
they intersect in points that are located outside of both conics, while the intersection points of
complex-conjugate tangent pairs are located on the inside of both conics.
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a b C
Figure 13

Assume that the observer motion has been started in such a way that it is inititally transversal.
Hence we have (qualitatively) the situation of Figure (13b). When the motion changes to non-
transversal, the unique FOE-point will move across the border of both conics, from the outside
to the inside [Figure (13c)]. Hence, by keeping track of the FOE-point in the previous recon-
struction step, we can discriminate the true solution from the false by a simple continuity argu-
ment. Clearly, if the time step is small enough, the correct FOE-point in the next step is the one
that is closest to the previous one. Hence, always keeping track of the previous FOE-point, this
continuity argument can be applied in the same way during the entire non-transversal part of
the motion. If ever the motion becomes transveral again, we do not need to remember the previ-
ous FOE-point anymore.

a b C

Figure 14

Figure (14) shows the result of applying this modified type of reconstruction algorithm to the
case of a circular helix observer orbit curve, traversed with constant speed, where the configu-
ration is such that the motion changes from transversal to non-transversal. The FOE-points cor-
responding to the transversal region of motion, with real silhouette envelope, is shown in
Figure (14a), and the added FOE-points, corresponding to the intersection of conjugate-com-
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plex tangents to the silhouette envelope is shown in Figure (14b). This clearly demonstrates
how the continuity condition of the direction of motion helps to discriminate between the two
direction candidates. The result of the corresponding silhouette reconstruction process, using
40 points is shown in Figure (14c) with a subsampling factor of 4.

6.3  Reconstructing the Image of the Observer Developables

In this section we will illustrate the reconstruction of the spherical image of the observer devel-
opables, and show how this leads to an algorithm for matching points on a stationary target
curve over different recorded images. From (15) we recall that if the target is a stationary
curve, then the <710> congruence is doubly directed. Hence, in this case, both the target- and
the observer developables consist of cones. In particular, each observer developable consists of
the lines joining a fixed point on the target curve with the successive points of the observer’s
orbit curve. Thus we arrive at the following

Fact 12: Finding the image of the observer developables D, (s) in the recording plane n(f) is

equivalent to constructing a matching between the individual points on a stationary
target curve over the different recorded silhouette frames.

Let us now address the question of how the image of the observer developables can be found.
From (23) we know that the focal plane D, (s, r) must contain the tangent line /. (z) to the

observer’s motion curve at time ¢. Hence, by joining the point FOE(?), representing the current
direction of motion, to the successive points on the recorded silhouette curve f(z) (Figure (15)),
we get a direction field on the latter curve, representing the direction of the corresponding focal
plane D, (s,t) . From (24) it follows that integrating this field gives a family of curves represent-

ing the image of the family of observer developables, and hence, by Fact (12), the required
matching of the points on the target curve over time. We summarize this as:

f0)

FOE(f)

Figure 15

Fact 13: Matching the points on a stationary target curve from a sequence of recorded silhou-
ettes can be achieved by integrating the direction field obtained by associating each
point on the recorded silhouette curve with the direction to the corresponding focus of
expansion.
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Figure (16) shows the results of this process in the case of a circular helix target curve observed
under motion along another circular helix. Figure (16a) shows the target-observer configura-
tion, Figure (16b) the recorded silhouette curves, i.e. the image of the target developables, and
Figure (16c) shows the result of the integration process described above, matching the points
on the target curve over time.

N

Figure 16

7 Application to Real Image Data

Having presented a few reconstruction examples on synthetic data, we will now apply the FOE-
reconstruction technique to a sequence of real images. Since we do not presently possess equip-
ment for controlled general 3d-motion, we have limited the experiments to detecting the motion
direction under linear motion.

7.1 Linear Motion with Conjugate Complex Silhouette Envelope

Figure (17) shows a sequence of images of a plastic ellipsoid target1 taken under linear motion
of the observer. The direction of motion was chosen to be in the “colliding” region , thus assur-
ing that the envelope of the recorded silhouette curves would be conjugate complex. For practi-
cal reasons we have chosen to translate the target along a straight line instead of doing the same
thing with the camera. These two configurations are of course equivalent. Figures (17a) and
(17b) show the starting and finishing positions of the target, and Figure (17c) shows the
recorded silhouettes overlayed in the same image. In Figure (17d) we see the result of applying
an edge detector to each successive image frame and then overlaying the results in a single
image. Finally, Figure (17e) shows the overlay of Figure (17a) and Figure (17d).

1. This target was manufactured by T. Henderson at the University of Utah and made available by the courtesy of O.D.
Faugeras at INRIA.
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Figure 17
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To arrive at an estimation of the direction of motion, we now proceed as follows: First, we per-
form a least square fit of a quadratic polynomial to each extracted edge-curve (i.e. recorded sil-
houette curve) of Figure (17d). Since we have been using a quadratic target, these fitted conics
can be expected to give a good analytic approximation of the recorded silhouette curves. Sec-
ond, when we have determined these approximating conics, we use them just as in the previous
chapter, and determine the points of intersection to double tangents of neighboring conics in the
family. This corresponds to using the time frames ¢ and ¢ + At, where At is the time difference
between successive images. The result is shown in Figure (18a). As can be seen, the presence of
noise in our data introduces a problem. Computing instead the points of intersection to double
tangents of the conics corresponding to times ¢ and ¢ + 2At, we get the result of Figure (18b).
For the sake of simplicity, we will refer to such curves as being related by step-2. Figures (18c)
and (18d) show the corresponding computation for conics related by step-3 respectively step-4.
As might be expected, we infer from Figures 18a, b, ¢, d that increasing the step greatly reduces
the noise. If we have reason to trust one of the silhouette curves significantly more than the oth-
ers, we can use it repeatedly and compute the points of intersection to double tangents of it and

the other curves in the familyl. The result of using the initial silhouette curve (smallest of the
conics) in this way is shown in Figure (18e). It is clear that this further increases the precision
of the computation of the FOE-point.

Finally, to get an idea of the “correct” result, an idealized configuration is shown in Figure
(18f). The conics here are formed from a dualized linear combination of the first and the last
conic in the family, which means that all pairs of conics from this new family have the same
common tangents.

Note: We can exclude the false direction candidate on account of the global structure of the
family of curves in Figure (18). Since the recorded silhouettes are much closer to each
other at the upper left corner of the picture, the true direction of motion must be the
point closest to this area. If the curves would have all touched each other in one point,
then the camera would in fact have been moving towards that point - tangentially to the
target object.

8 Conclusions and Future Work

In this paper we have discussed the scene reconstruction problem under translational observer
motion. We have introduced the <TargetlObserver> congruence - with its corresponding target
developables and observer developables - as a framework for a line-geometric approach to such
problems [Definitions (1) and (2)]; we have demonstrated how these concepts give a way to

describe the global structure of the various geometric configurations that arise from the obser-
vation of points, lines, curves and surfaces [(15)]; we have analyzed under what conditions two
targets are indistinguishable in a given sequence of monocular observations [Fact (5)]; we have
characterized linear observer motion in terms of the global geometric structure of the corre-

1. We might, for instance, have kept the camera at rest for a long time, and therefore have been able to determine the corre-
sponding silhouette curve with a significantly better precision than the others.
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sponding observer developables [Fact (7)]. Under known observer motion we have shown how
to reconstruct both the target- [(19), (21)] and the observer-developables [(22), (23), (24)].

d e f
Figure 18

Moreover, we have introduced a direct way to compute the direction of motion (FOE) as the
intersection of two double tangents to two consecutively recorded silhouette curves. As
pointed out above, when these common tangents are real [Fact (9)] this method has been inde-
pendently described by Cipolla, Astrém and Giblin in [(10) Property 1]. Here we have
extended this FOE reconstruction technique to include conjugate complex double tangents
[Fact (11)], thereby widening its scope to include observer motion “towards” and “away from”
the target. Knowing only the observer’s speed as a function of time, we have shown how to
recover the observer’s motion as well as a set of silhouettes on the target and illustrated this
technique on synthetic images [Figure (10), Figure (14)] as well as on real image data [Figure
(17)]. For the sake of simplicity we have used quadric surface targets, where the computation
of silhouette curves can be handled analytically. We stress that any hypothesis regarding
observer speed provides the necessary input to a reconstruction process of the scene, the results
of which can be compared with any independently available scene information, in order to ver-
ify or falsify the initial speed hypothesis. The sensitivity of the reconstruction process with
respect to observer speed has been illustrated in Figure (11). Finally we have presented an algo-
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rithm for the matching of points on a curve-like target from a sequence of images taken under
translational observer motion - without any speed information at all [Fact (13)].

Although we have presented some experimental results, the emphasis of this paper is on the
theoretical framework and its ability to provide a unifying description of structure from motion
problems that emphasizes the global geometry of the configuration. The practical applicability
of this framework in recovering scene structure from real images is therefore still an open ques-
tion. In the future we plan to investigate this field, aiming to demonstrate how the congruence-
geometric framework can enable the construction of globally based methods for determining
target shape, verifying and stabilizing observer motion, discriminating between stationary tar-
gets and targets moving relative to the background, grouping targets with the same motion rel-
ative to the moving observer and discriminating beteen curve edges and occluding surface
contours.
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