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1 Introduction

 

In an influential paper Binford 1971 [1] proposed generalized cylinders as a model for representing 
visual shape. With reference to Blum´s medial axis transform he argued that objects, or at least their 
parts, often can be considered as generated by sweeping a planar curve, the cross section, along an axis 
or a spine. For instance, both manufactured objects and objects that accrue from natural growth or wear-
ing tend to have such shapes. Extensive work on representation and understanding of shape in computer 
vision has since been based on this notion, and it has also been used to form theories for object recogni-
tion by humans [2]. Despite these vast efforts on applying the generalized cylinders to problems on 
shape, the general  representation  that  Binford  suggested  does  not  necessarily  define non-singular 
surfaces,  i.e.  surfaces that are boundaries of physical objects.  This problem has largely been addressed 
by only considering very special cases, the main one being that of straight homogeneous generalized cyl-
inders (SHGC:s).  Moreover, as pointed out by Koenderink ([3], p. 593) the GC notion is so general that 
it contains almost everything.  Of course, one can argue that it is more natural to consider volumetric rep-
resentations than surface representations for physical objects. Nevertheless, it is undisputable that sur-
faces can be observed visually. It is also true that the intuition behind Binford´s suggested model is quite 
natural. The attempts to either restrict the model to oversimplified cases, or to only consider local proper-
ties is no doubt critical for solving certain recognition problems, but they neither fully exploit the global 
aspect, nor the intuitiveness of Binford´s definition. Therefore, it must be of interest to ask if there is any 
more precise definition of generalized cylinders that specifies the notion better.

In this paper we will address this question from two different perspectives. First, we will consider the 
general definition of the generalized cylinder surface class and from it derive conditions that guarantee a 
non-singular surface. Secondly, we will consider some classes of surfaces that obviously fall within the 
original definition, but are more general than the SHGC. Here we will not discuss the problem that pre-
sumably has caused the development into mainly studying SHGC:s namely that of what properties can 
be observed from an image, i.e. invariants in a general sense. In the end this is of course the underlying 
question that must guide the development towards a better taxonomy that we are attempting. There is a 
wealth of such results, in particular concerning SHGC:s (see e.g. [4]-[9]). However, we feel that the basic 
geometry of the situation is worth to analyze on its own account, and this is the topic of the present paper.

The taxonomy that we will discuss here can be considered to evolve either in  a top-down or a bottom-
up  direction. It is introduced in a 

 

top-down

 

 manner, regarding the shape of a surface as evolving dynam-
ically from the general towards the special by applying a series of successive specializations, introduced 
in the form of a hierarchy of 

 

tightenings

 

  of  parametric constraints. This process is analogous to the man-
ufacturing of a special kind of surface from a general piece of material by the successive application of 
various tools - e.g. lathing a rotationally symmetric surface from a non-symmetric piece of wood - each 
tool leaving its mark of symmetry on the shape of the material.  However, our taxonomy can also be 
“applied in reverse”, i.e. in a 

 

bottom-up

 

 way, starting from a specialized shape and subjecting it to a 
series of successive generalizations, corresponding to a sequence of 

 

relaxations

 

 of the parametric con-
straints. This is analogous to manufacturing a surface from a highly specialized type of shape and distort-
ing its initial symmetry in various ways.  As an example, a plastic cylinder can be heated and vaccuum-

 



 

suctioned into a rotationally symmetric surface, which can then be bent in such a way that its axis is 
formed into e.g. a circle (Fig. 3). The resulting surface is neither cylindrical, nor rotationally symmet-
ric, but it will still qualify as a natural subtype of generalized cylinder, whose constructional history 
can be quantitatively described in terms of constraint relaxations of its shape parameters. In fact, this 
bottom-up view is more closely related to the process of shape perception, where one initially matches 
simple shapes against the unknown object in order to determine e.g. the best “cylindrical fit”, and then 
introduces various deviations from the cylindrical shape in order to increase the closeness of the fit.

 

2 General Parametrization and Condition of Regularity

 

Our framework is based on a general parametrization method for generalized cylinders that formal-
izes Binford´s intuitive idea. We will use this parametrization to formulate  a general regularity condi-
tion as well as to suggest a taxonomy scheme for such surfaces. 

A 

 

generalized cylinder 

 

 

 

S

 

 (in the sense of Binford’s) is generated as a point-locus of  a planar curve 

 

C

 

 (the 

 

cross-section curve

 

) that is subjected to some motion 

 

M

 

 in space and allowed to change its 
shape during this motion.  Let the plane of 

 

C

 

 be called 

 

π

 

 and let any one of the two unit normals of 

 

π

 

 be 
denoted by  

 

u 

 

.  Consider a fixed point 

 

O

 

 in 

 

π

 

 and choose a 2-dimensional cartesian coordinate system 
in 

 

π

 

 with the origin at 

 

O

 

 and unit base vectors 

 

i

 

 and 

 

j

 

. By tracking 

 

O

 

  during the motion 

 

M

 

 of 

 

π

 

 we asso-
ciate with this motion a space-curve 

 

Γ

 

 called a 

 

spine-curve

 

 of  

 

S

 

. Using the  arclength  

 

s

 

  of  

 

Γ

 

  as  
parameter,  the  motion  

 

M

 

(

 

s

 

)   can  be  decomposed  into  a  translation 

 

T

 

(

 

s

 

)  of the point  

 

O

 

  and  a 
rotation 

 

A

 

(

 

s

 

) of the plane 

 

π

 

  around the point  

 

T

 

(

 

s

 

)

 

O

 

  = 

 

O

 

(

 

s

 

) = (

 

x

 

0

 

(

 

s

 

), 

 

y

 

0

 

(

 

s

 

), 

 

z

 

0

 

(

 

s

 

)). If  

 

ξ

 

 and 

 

η

 

 denote the 
internal coordinates of the cross-section curve  

 

C

 

  in the system {

 

i

 

, 

 

j

 

} of 

 

π

 

,  the cross-section curve 

 

C

 

(

 

s

 

, 

 

t

 

) is expressed relative to 

 

O

 

(

 

s

 

) by:

 

(1)

 

In equation (1) 

 

t

 

  represents the internal parameter of  

 

C

 

  while 

 

s

 

 represents the external parameter 
of  

 

M

 

. The dependence of  

 

ξ

 

 and 

 

η

 

 on  

 

s

 

 reflects the possibility of shape change of 

 

C

 

  during the motion. 
Hence we can express the points on the generated (parametrized) surface  

 

S

 

   in the following way:

 

(2)

 

 or in coordinate form

 

(3)

 

Here the columns of the 3x3 orthogonal matrix 

 

A

 

(

 

s

 

)  are the "external" coordinates of the  vectors 

 

 
i

 

(

 

s

 

), 

 

j

 

(

 

s

 

)  and  

 

u

 

(

 

s

 

)  respectively.  With  

 

x

 

 = (
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,

 

 z

 

),   

 

r
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0
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z

 

0

 

)  and    

 

c

 

 = (

 

ξ

 

, 

 

η

 

, 0)  we can write (3): 

 

(4)

 

It is clear that (4)  represents a way to parametrize any form of GC. Without some kind of con-
straints on the spine-curve  

 

Γ

 

  and the cross-section  C, this kind of parametrization  is by no means 
unique.  In fact, for any given  Γ, any surface  S  can be regarded as a GC  with  spine Γ in an infinity of 
different ways. From (4) we can easily deduce a sufficient condition of regularity for the surface, 
namely:

(5)

C s t,( ) ξ s t,( ) i s( ) η s t,( ) j s( )    .+=
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x s t,( ) r s( ) A s( ) c s t,( )    .+=

xs s t,( ) r' s( ) A' s( ) c s t,( )    ,+=

xt s t,( ) A s( ) ct s t,( )    ,=



where

(6)

which guarantees that the normal to S exists  -  and is parallel to  xs x xt  -  for each point  (s, t) that 
satisfies (6).  Hence (5) and (6) constitute a way to verify that a given generalized cylinder parametri-
zation defines a regular surface. Of course, the vanishing of  xs x xt - does not necessarily imply the 
non-existence of the surface normal at the corresponding point. We will not pursue this matter further 
here, but note that Ponce [6] in fact gives a necessary and sufficient condition for the regularity of a 
SHGC.

3 Taxonomy

Having defined a general way to parametrize a generalized cylinder, and expressed the regularity 
condition of the surface relative to this parametrization, we will now use our parametrization to 
attempt to formulate a taxonomy for generalized cylinders. This will be done by introducing a hierar-
chy of constraints on the parametrization (4) that define parametric subclasses in the corresponding 
way. These constraints are chosen to include the traditional classification of generalized cylinders  
within the field of computer vision - such as e.g. SHGC, Piped surfaces and Rotational surfaces. We 
also introduce two natural steps of generalization of Rotational surfaces - that we term Circular Sec-
tions Twist Compensated surfaces (CSTC) respectively Parallel Sections Twist Compensated surfaces 
(PSTC). The surfaces of type CSTC relax the constraint of straight spine (= axis of rotation),  and the 
surfaces of type PSTC relax as well the constraint of circular section curves for a Rotational surface. 
What survives in both of these cases is the orthogonal net  corresponding to the curves of section and 
their orthogonal trajectories, whence generalizing the net of meridians and parallel circles in the case 
of a Rotational surface.

The constraint hierarchy that we introduce can be seen as a process of shape evolution by succes-
sive specializations. The underlying analogy is the application of machine tools to an initital object of 
generic shape S.   A collection of shape subtypes of S could be imagined as a set of machine made sur-
faces, where each machine takes a surface of generic type (S) as input and leaves its mark of symmetry 
on the produced "output surface". For example, a lathe turns out a rotational surface, and laminating 
rollers produce a developable surface.The hierarchy of constraints is presented in the form of a so 
called shape graph, (Fig. 1) where each shape type (box) is considered as a specialization of the types 
connected to it from above. Most of the specializations are simply expressed by multiple inheritance 
(i.e. several paths leading down into the same shape subtype box), but sometimes an additional con-
staint is needed in order to arrive at the corresponding subtype. In such cases this additional constraint 
is expressed by a number (e.g. 5. in Fig. 1) directly on top of the subtype to which the constraint 
applies. This number also appears in the text, together with an equation expressing the corresponding  
parametric constraint.

In this way a general parametrization of type (4) gives rize to a dynamic shape type system of sub-
classes of generalized cylinders, where each subtype is conceived as having evolved from a general 
prototype by a process of specialization (a "constructional history") - corresponding to a sequence of 
successive tightenings of parametric constraints. Naturally,  any  shape graph will always be incom-
plete  -  showing only the shape types and transitions that we want to consider for some reason or 
other. However, the shape graph is open to expansion.  This is exemplified by the shape types of Fig. 1,  
denoted by “Plane Spine” respectively” Linear Sections”. These shape types are of course also sub-
types of the general GC type, but they have been left unconnected to the top GC-type as a notational 
convenience.   We now describe our shape graph of GC:s (see [10] for more details).  From the general 
GC box of Fig. 1 we have introduced five different parametric constraints:

xs xt× 0   ,≠



(7)

(8)

(9)

(10)

(11)

Fig. 1    A shape graph (with cylindrical connectivity) for the family of generalized cylinders.

leading downwards to five corresponding shape subtypes of GC.  The numbers 1 - 5 correspond 
between the above formulas and Fig. 1. The constraint  1  leads to the type Straight Spine GC  since 
this constraint obviously implies that the spine curve r(s) must be a straight line segment. If  2  is ful-
filled, it is clear that the planes of cross section must all be parallel to each other, since in this case they 
are moved by a pure translation. Hence the corresponding shape subtype could be termed Transla-
tional GC.   3  indicates that the cross section curves c(s, t) are related by a pure scaling function f(s) 
relative to the origin  O  of the cross section plane coordinate system (i.e. the point of intersection 
between the cross section plane and the spine curve). The corresponding shape subtype could therefore 
be termed Homogeneous GC.   4  expresses the fact that the cross section curves are parallel curves of 
each other. This shape subtype we have called Parallel Sections GC.  Finally,  5  implies that the nor-
mal u(s) to the cross section plane is parallel to the tangent of the spine curve at the point  O of inter-
section between this curve and the cross section plane.  Hence the corresponding shape subtype could 
be naturally termed Right GC.  

Continuing downwards in Fig. 1 and combining the constraints 1, 2 and 3 we arrive at the familiar 
SHGC (Straight Homogeneous GC) which is the most commonly discussed subtype of generalized 
cylinder in the literature (see the references above).  Combining  constraints  3  and  4,  it  is  easy  to  
see  that  the only  type of  cross section curve that is transformed into a parallel curve by homogene-
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ous scaling is the circle. Hence  Circular Sections GC  is the combination of  “Homogeneous” and 
“Parallel Sections”. However, if the cross section curve is constant,  this curve can be considered  as 
scaled by unity (f(s) = 1  in 3) as well as parallel displaced by zero (Distance(s) = 0 in 4). Therefore we 
must also admit the Constant Sections GC as a legitimate subtype of “Homogeneous” and “Parallel 
sections”.

4 Twist Compensated Generalized Cylinders 

The underlying geometric meaning of the constraints  1 - 5  above is intuitively clear. We  now 
introduce a constraint that requires somewhat more of a geometric explanation. Consider the Right GC 
subtype defined by constraint  5, and let the Frenet-frame of the spine-curve Γ be denoted by {t(s), 
n(s), b(s)}.  Since the plane of cross section in this case is perpendicular to the tangent  t  of the spine-
curve,  we are free to choose {i, j} = {n, b}  as the coordinate system for internal representation of the 
cross section curve  C  in the plane of cross section  π , and  u = t  as the unit normal of this plane. Con-
sider how to express the most general orthogonal transformation A(s) for the Right GC subtype. Our 
choice of internal coordinate system in the cross section plane  π  guarantees that this plane remains 
perpendicular to the spine-curve  Γ  as the plane  π   moves along this curve.   In order to express a gen-
eral orthogonal transformation A(s) which is subject to this constraint,  we must therefore transform 
the vectors {n, b} by a general rotation in the cross section plane itself - i.e. by a rotation with axis  t.  
Denoting the angle of this "internal rotation" by  ϕ(s),  we can express the general orthogonal transfor-
mation  A(s)  corresponding to the Right GC  subtype as :

(12)

We empasize that the representation(12) is valid - with suitably chosen internal rotation angle  ϕ(s)  
- for any surface of type Right GC.  We will now restrict this type by introducing a constraint on ϕ(s).  
We note that the the torsion τ  of the spine-curve gives rise to an internal rotation of the cross section 
coordinate system {n(s), b(s)} itself,  as the cross section plane moves.  From the Frenet  formulas we 
have   Hence the internal twist-angle  ψ(s) of the  {n(s), b(s)} coordinate system  is 
given by the integral of the torsion of the spine-curve with respect to its arc-length  s :

(13)

Relative to some arbitrarily chosen initial position  s0 ,  the internal twist of the cross section coordi-
nate system can therefore be expressed as

(14)

We  now introduce the desired constraint on the internal rotation angle  ϕ(s)  in  (12). The subtype of 
Right GC that we have in mind corresponds to the following choice of ϕ(s) :

(15)

The geometric meaning of  6  is to compensate the cross section curve  C  for the internal torsion (= 
twist) of the coordinate system  {n(s), b(s)} and rotate the curve  C   with the same amount  in the 
opposite direction. Hence the corresponding subtype will be called Twist Compensated GC. 
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It turns out (see [10]) that if, in addition to  6, the cross section curve remains constant, we  generate 

an interesting surface type known as the Monge surfaces1. It is shown in [10] that the following two 
characterizations are equivalent:    (i)   A Monge surface is a surface that is generated by a plane (pro-

file) curve whose plane rolls without slipping over a developable surface2;   (ii)  A Monge surface is a 
Constant Section Twist Compensated GC.

5 Generalized Rotational Surfaces

We will now generalize the rolling profile construction (i) for Monge surfaces to generate a  subtype  
of  GC  which  we  call  Parallel Sections Twist Compensated GC. Moreover, we will show why it con-
stitutes the natural generalization of rotational surfaces that was mentioned above. We begin by choos-
ing a family of parallel curves {Cp : p ∈ R} in the plane of cross section π .  Then, as the latter plane 
rolls over the developable surface, we let the cross section curve  C  vary continuously among this 
family according to some arbitrarily chosen law  p = p(s), where  s  parametrizes the position of the 
cross section plane  π(s). Hence, in this case, the cross section curve is given by

(16)

For fixed t = t0 , consider the curve  C(s, t0), which is traced out for varying  s   by the point  Q(s0, t0) 
on the curve C(s0, t0). Then, for a small increment  ds, the corresponding displacement   dQ(s) = 
Q(s+ds, t0) - Q(s, t0) can be regarded as the result of two composant motions - one internal “parallel 
curve displacement” within the cross section plane, and one external rotating motion displacement 
around the corresponding generating line of the developable “contact surface” for the rolling motion of  
π(s). Now, since parallel curves share the same normals, and since rotating motion of a plane traces out 
orthogonal trajectories of each of its points, it follows  that each of these two composant motions of 
Q(s, t0) is perpendicular to the cross section curve  C(s, t0). Therefore this orthogonality condition must  
hold for their resulting sum also. Hence the parametric net of (12) with the constraints of (15) and (16) 
will generate a family of plane parallel curves (s = const) and their orthogonal trajectories (t = const).

Finally, let us consider the parametric net of  (12), (15) and (9) with the circular section constraint 
g1(t) = cost,  g2(t) = sint. It is easy to see that as the spine-curve gets straightened out, this net turns into 
the net of parallel circles and meridians of the corresponding Straight Spine Rotational Surface. This is 
the reason for our claim that the CSTC and the PSTC subtypes constitute a natural two step generaliza-
tion of a Straight Spine Rotational Surface. First we get rid of the straight spine and introduce  a 
“curved axis”   -   while still keeping the circular perpendicular cross section curves (CSTC). Then we 
get rid of these circles as well, and introduce the parallel-curve perpendicular cross section curves 
(PSTC). In both cases the parametrization given by (12) and (15) delivers the generalized orthogonal 
net which corresponds to the orthogonal net of parallel circles and meridian curves in the case of a 
rotational possessing surface.

6 Examples and Additional Remarks

In Fig. 2 (left) we see a  Circular Sections Twist Compensated GC with a cylindrical helix spine 
curve. This is the first step generalization of rotational surface that was mentioned above. Hence the 
parametric net is orthogonal but since the surface is not (in general) a Canal surface,  the parametric 
net is not principal.  The second step generalization of rotational surface is illustrated in Fig. 2 (right),  
which shows a surface of type Parallel Sections Twist Compensated GC (with the same circular helix 
spine curve).  In fact, the PSTC surface on the right has been constructed from the CSTC surface on 

1. The term Monge surface (German: Gesimsfläche) should not be confused with the term Monge patch, which is often used 
in differential geometry to denote a surface coordinate patch of type  (x, y, f(x, y)).

2. See [10] for a discussion of the fact that this surface is identical to the developable focal sheet  of the Monge surface, and 
also the fact that possessing a developable focal sheet  is a geometric  characteristic of the Monge surface type. 

C s t,( ) Cp s( ) t( )    .=



the left by changing its circular cross section curves into an ellipse and its parallel curves. Since the 
two surfaces are parametrized as  CSTC and PSTC , their  parametric nets  are both orthogonal.  

Fig. 2   GC-parametrized surface of type CSTC (left) and another one of type PSTC (right).

In Fig. 3 we  present a dynamic bottom-up example of shape evolution.  We start from a circular 
cylinder and deform it into a more general type of rotationally symmetric surface, thereby destroying 
the cylindrical symmetry of the original surface. This constitutes a relaxation of the parameters of the 
surface - the radius of the cross-section circle is no longer constant between different cross-sections. 
Next we destroy the rotational symmetry by deforming the straight spine-curve into a circle. We can 
identify the bottom-up path in the shape graph of Fig. 1 corresponding to the shape deformation that 
we have produced. Starting from “Circular Cylinder” we move up to “Rotational with Straight Spine”  
and then up to CSTC. Since the spine-curve was deformed from a straight line into a circle, the shape 
type of the produced surface is a combination of the types “CSTC” and “Circular Spine”.

Although the question of representation uniqueness is not the  topic of this paper, it is still appropri-
ate to include a few remarks concerning this issue here.  First it is important to observe the  difference 
between the GC-representation of a surface  S  in terms of a spine-curve  Γ  and a family of cross sec-
tion curves C on the one hand, and the focal surface (see [11]) of  S  on the other.  Of course, the GC-
parametrization of  S  has an inherent ambiguity, which necessitates a choice - guided by the symmetry 
of  S  -  in order to obtain analytical simplicity. On the other hand, the focal surface of  S  is determined 
solely by the geometry of  S  and is therefore unique. Hence a GC-parametrization of  S  that is related 
to its focal surface will correspond more closely to the underlying geometry of the represented surface. 
[11] discusses in detail  a shape-taxonomy based on the geometry of  the focal surface. A family of sur-
faces that is sometimes mentioned in connection with generalized cylinders are the envelopes of 1-
parameter families of spheres. 



Fig. 3   A  cylinder evolving its shape by breaking some of  its symmetries 

In the geometric literature such surfaces are often called Canal surfaces1 . It might be surmised that 
a Canal surface should have a natural parametrization  as  a  CSTC-type  of  generalized  cylinder.   
This is however not the case, as shown in [10].

7 Summary

We have proposed an approach to systematically taxonomizing generalized cylinders by an appro-
priate parametrization. In this way we obtain a rich set of geometric surface classes suitable for future 
studies with respect to invariants and visually observable properties. By computer generated examples 
we have demonstrated the descriptive power of our taxonomy, which goes far beyond that of earlier 

1. There is a most unfortunate divergence of terminology involved here. We follow the German tradition, which takes the 
term  Kanalfläche to mean the envelope of a general 1-parameter family of spheres. When the radius is constant, the ger-
mans refer to a  Rohrenfläche, which we have translated into Piped surface. Some English writers (notably Eisenhart)  use 
the term  Canal surface in this more restricted case of constant radius.  To make matters worse, the term  Tubular surface is 
also used in two ways by the geometric community ; sometimes referring to a general spherical envelope (e.g. by Eisenhart 
[12]), and sometimes to a spherical envelope with constant radius (e.g. by Koenderink [3]).



suggested schemes. As discussed by Naeve in [11], there are natural ways of topologizing representa-
tions of the proposed type, hence obtaining measures of similarity of evolving shapes.
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