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Abstract

 

1 Applications to Projective Geometry

 

This paper applies geometric algebra to the geometry of conics in the plane. Starting

from the classical double algebra expression for a conic on 5 points  in

terms of a running variable, we show how to eliminate this variable (by the use of ten-
sor products) and express the conic on 5 points without resorting to a running variable.
Writing , and designating the conic by 
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P

 

 

 

, the homogene-

ous point equation of 

 

Q

 

P

 

 can be expressed as , where
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Making use of tensor products, we show that   where 
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Here  denotes the function on 

 

P

 

2

 

x

 

P

 

2

 

 taking (
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) to
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with the analogous expression for the tensor product in the second term of (2). Differ-
entiating this expression with respect to one of the participating points leads to a for-
mula that expresses the sensitivity of a conic with respect to small changes in one of
its points.

The expression (2) for a conic as a function of five points, opens up possibilities for
many interesting types of computations involving conics. We make use of it and apply

the unified geo-MAP computational technique

 

1

 

 in order to deduce the following 

 

Prop. 1:

 

The conic that passes through two given points 

 

p

 

 and 

 

q

 

 and osculates a
given curve 

 

M

 

 at a point 

 

m

 

(

 

s

 

) is given by the equation   

 

(4)

 

where .
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2 Polarizing with respect to a conic

Let  be a symmetric linear mapping, and consider the conic

. The polar of the point x with respect to T (or Q) is
defined by

(5)

Notation: The large over bar should really be a ‘tilde’, but our word-processing pro-
gram does not support ‘large tildes’

Letting  denote the outermorphism induced by T, we deduce the following general-
ized form of the pole/polar relationship of a point and a line with respect to a conic.

Prop. 2: For each symmetric linear and each we have

(6)

Note: The relationship (6) is valid also for rank deficient conics. 

Let I be a unit n-blade, and let . The dual-outer product can then be expressed
- for general multivectors x and y - in the following way:

(7)

We call a mapping  a dual-outermorphism if 

(i):   F is linear.  (ii):  F is step-preserving.  (iii): .

(vi):  for general multivectors x and y.

3 Reciprocating a conic with respect to another conic

In §(3.3) we show how to perform reciprocation (dualization) of a conic with respect
to another conic by polarizing the former with respect to the latter. This mapping has a
natural expression in terms of outer- and dual-outermorphisms, as given by

Prop. 3: Let S and T be symmetric linear mappings  with T non-sin-

gular. Polarizing the points of the conic  with respect to

the conic  gives rise to the conic

(8)

where  is the polar of x with respect to T.

4 Generalized complex numbers and geometric duality

We demonstrate an interesting type of isomorphism between two vector spaces, using
two different kinds of generalized complex numbers. This isomorphism has potential
interest as a means of representing the interplay between real and complex projective
geometry in 3 dimensions. 
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Consider the geometric algebra  with unit pseudo-scalar

, and let C denote the ordinary complex numbers with imaginary unit i.

Then I commutes with each element of G,  , , and we have

(9)

We  define the following two versions of generalized complex numbers:

(10)

It is clear that the following mapping  mapping is an algebra isomorphism:

(11)

Noting that C1 is a vector space over C, we consider the mapping  defined

by

(12)

and show that this mapping is a vector space isomorphism, i.e. that 

Prop. 4: C1 and C 3  are isomorphic as vector spaces over C0 (or C).

We feel that this isomorphism will be important in exploring the connection between
real and complex 3-dimensional geometry, in a way that generalizes Felix Klein’s
classical embedding of R2 into C2. This representation can be used in order to keep
track of complex conjugate aspects of real geometric configurations. It has been used
for this purpose by Winroth  in the dynamic geometry program pdb, developed as part

of his thesis work1 at the Computational Vision and Active Perception Laboratory
(CVAP) at The Royal Institute of Technology (KTH). This program will be used  in
the presentation to visualize the mappings of polarization and reciprocation.

1. Winroth, H., Dynamic Projective Geometry, TRITA-NA-99/01, Dissertation, March 1999, 
Computational Vision and Active Perception Laboratory, NADA / KTH 
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