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1 Introduction

 

The aim of this chapter is to contribute to David Hestenes’ vision - formulated on his

web-site
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 - of desiging a universal geometric calculus based on geometric algebra. To
this purpose we introduce a framework for geometric computations which we call

 

geo-MAP

 

 (

 

geo-Metric-Affine-Projective

 

) 

 

unification

 

. It makes use of geometric alge-
bra to embed the representation of euclidean, affine and projective geometry in a way
that enables coherent shifts between these different perspectives. To illustrate the ver-
satility and usefulness of this framework, it is applied to a classical problem of plane
geometrical optics, namely how to compute the envelope of the rays emanating from a
point source of light after they have been reflected in a smoothly curved mirror. 

Moreover, in the appendix, we present a simple proof of the fact that the ‘natural basis
candidate’ of a geometric algebra - the set of finite subsets of its formal variables -
does in fact form a vector space basis for the algebra. This theorem opens the possibil-
ity of a deductive presentation of geometric algebra to a wider audience.

 

2 Historical background

 

Applying polynomial algebra to geometry is called algebraic geometry if the polyno-

mials commute with each other, and geometric algebra if they don’t.
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 Let us take a
brief look at the historical process that has developed the design of present day rela-

tionships between geometry and algebra.
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1. This web-site can be located via the 

 

Faculty Directory

 

 of the 

 

Depart of Physics and 
Astronomy

 

, 

 

Arizona State University.

 

 

 

2.

 

Hence, in these mathematical field descriptions, the words ‘algebra’ and ‘geometry’ do not 
themselves commute.

 



 

1

 

With his work 

 

La Geometrie

 

1

 

, published in 1637, Descartes wielded together the two
subjects of algebra and geometry, which had each been limping along on its own one
leg. In this process he created the two-legged subject of analytic geometry, which
turned out to be capable of moving forward in big strides and even giant leaps - such
as e.g. the one manifested by the differential and integral calculus of Newton and

Leibnitz
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 towards the end of the 17:th century - building on work by Fermat, Wallis

and Barrow
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. 

But these tremendous advancements came at a considerable price. As Hestenes points
out in [(20)], the careful separation between number and one-dimensional un-oriented
magnitude that had been so meticulously upheld by Euclid, was thrown away by Des-
cartes, an identification that has had fundamental consequences for the design of ‘vec-

torial’ mathematics
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. By giving up the difference between order and magnitude,
Descartes in effect created a 1-dimensional concept of direction, where only 1-dimen-
sional geometric objects - like lines or line segments - could be oriented in a coordi-
nate free way. 

As we know, two centuries later, Grassmann discovered how to represent oriented

multi-dimensional magnitudes and introduced a calculus for their manipulation
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.
Unfortunately, the fundamental nature of his contributions were not acknowledged by
his contemporaries, and in the great battle over how to express multi-dimensional
direction that was eventually fought between the ‘ausdehnungen’ of Grassmann
[(15)] on the one hand and the ‘quaternions’ of Hamilton [(16)] on the other, the vic-
tory was carried off by the vector calculus of Gibbs [(13)] and Heaviside [(18)] -
under heavy influence from the electro-magnetic theory of Maxwell [(27)]. This fact
has fundamentally shaped the way we think about vectors today, and it has lead to
concepts such as the familiar cross-product that we teach our mathematics students at

the universities.
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Another example of a dominating design-pattern within present day geometrical
mathematics is provided by the field of algebraic geometry. Within this field of math-
ematics, one describes non-commutative geometrical configurations in terms of com-
mutative polynomial rings - using so called “varieties of zero-sets” for different sets

of polynomials
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. The urge to factor these polynomials creates an urge to algebraically
close the field of coefficients, which leads to complex-valued coefficients, where one
has factorization of single-variable polynomials into linear factors, and where

Hilbert’s so called ‘nullstellensatz’
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 provides the fundamental linkage between the
maximal ideals of the polynomial ring and the points of the underlying geometric
space. 

By adhering to this design one gains a lot of analytical power, but one also achieves
two important side effects that have major consequences for the application of this
kind of mathematics to geometric problems: First, one loses contact with real space,

 

3. Hestenes [(20)] gives an excellent description of this process.

1. Descartes [(10)].

2. See Newton [(32), (33)] and Leibnitz [(24), (25)].

 

 

 

3. See [(3)] for more detail.

4. i.e. the mathematics of vectors, matrices, tensors, spinors, etc. as we know it today.

5. See Grassmann [(14)].

6. An interesting account of this development is given by Crowe in [(9)].

7. See e.g. Hartshorne: “What is algebraic geometry” [(17), pp. 55-59].

8. See e.g. Atiyah-Macdonald [(1), p. 85]
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which means that algebraic geometry does not have much to say about real geometry
at all, since there is no nullstellensatz to build on here. Second, since the interesting
structures (= the varieties) are zero-sets of polynomials, they are mostly impossible to
compute exactly, and hence must be approached by some form of iterational scheme -
often using the pseudo-inverse (singular values) decomposition which is the flag-ship
of computational linear algebra. 

We could argue other cases in a similar way. The point is not to criticise the corre-
sponding mathematical structures per se, but rather to underline the importance of dis-
cussing the concept of mathematical design in general - especially within the scientific
communities that make use of mathematical models to represent the phenomena
which they study. Bringing a powerful mathematical theory into a scientific field of
study most often leads to interesting applications of that theory, but it always carries
with it the risk of getting caught up in the difficulties introduced by the theory itself -
rather than using it as a tool to handle the difficulties of the initial problem domain. Of
course there is never a sharp distinction between these two cases, but rather a trade-off
between the beneficial and the obstructional aspects of any mathematical tool. 

In short, the historical process described above has resulted in a large variety of alge-
braic systems dealing with vectors - systems such as matrix algebra, spinor algebra,
differential forms, tensor algebra, etc. etc. For many years David Hestenes has pointed
out that such a multitude of computational systems for closely related conceptual enti-
ties indicate underlying weaknesses of the corresponding mathematical designs. As
members of the scientific community we all share a dept of gratitude to people like
David Hestenes and Garret Sobczyk, who have devoted a large part of their research
to exploring various alternative designs - designs that aim to develop the legacy of
Grassmann [(14), (15)] and Clifford [(4), (5), (6)] into its full algebraic and geometric

potential
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. In fact, it was the works of Hestenes [(20)] and Hestenes & Sobczyk [(21)]
that brought the present authors into the field, and made us interested enough to take
up active research in geometric algebra. 

 

3 Geometric background

 

3.1 Affine Space

 

As a background to the following discussion we begin by introducing the abstract
concept of an affine space followed by a concrete model of such a space to which we
can apply geometric algebra. Our presentation of affine spaces follows essentially that
of Snapper & Troyer [(35)], which starts out by discussing affine spaces in abstract
and axiomatic mathematical terms:

 

Def. 1:

 

The 

 

n-dimensional affine space

 

 over a field 

 

K

 

 consists of a non-empty
set 

 

X

 

, an 

 

n

 

-dimensional vector space 

 

V

 

 over 

 

K

 

, and an ‘action’ of the
additive group of 

 

V

 

 on 

 

X

 

. The elements of 

 

X

 

 are called 

 

points

 

, the ele-
ments of 

 

V

 

 are called 

 

vectors

 

 and the elements of 

 

K

 

 are called 

 

scalars

 

. 

 

Def. 2:

 

To say that the additive group of the vector space 

 

V

 

 

 

acts

 

 on the set 

 

X

 

means that, for every vector  and every point  there is

defined a point such that

 

1. In this battle Hestenes and Sobczyk have been joined by a number of people. They include 
Rota and his co-workers Barabei and Brini [(2)], who were instrumental in reviving Grass-
mann’s original ideas, and Sommer [(22), (36)], who plays an important role in bringing 
these ideas in contact with the engineering community, thus contributing to the growing 
number of their applications

 

.

v V∈ x X∈
vx X∈
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(i): If and , then .

(ii): If 0 denotes the zero vector of 

 

V

 

, then  for all .
(iii): For every ordered pair (

 

x

 

, 

 

y

 

) of points of 

 

X

 

, there is one and only
one vector  such that .

The unique vector 

 

v

 

 with  is denoted by  and we write

 

(1)

 

Also, it is convenient to introduce the following 

 

Notation:

 

The affine space defined by 

 

X

 

, 

 

V

 

, 

 

K

 

 and the action of the additive group of 

 

V

 

 on 

 

X

 

 is denoted by (

 

X

 

, 

 

V

 

, 

 

K

 

). 

From now on, we will restrict 

 

K

 

 to be the field of real numbers 

 

R

 

. The corresponding
affine space (

 

X

 

, 

 

V

 

, 

 

R

 

) is called 

 

real affine space

 

. We now introduce a model for real
affine space - a model which is in fact often taken as a definition of such a space.

Let 

 

V

 

 be an 

 

n

 

-dimensional vector space over 

 

R

 

. For the set 

 

X

 

, we choose the vectors
of 

 

V

 

, that is, , where 

 

V

 

 is considered only as a set. The action of the additive
group of 

 

V

 

 on the set 

 

V

 

 is defined as follows:

If    and , then .

 

(2)

 

It is an easy exercise to verify that 

 

Prop. 1:

 

The space  as defined above, is a model for 

 

n

 

-dimensional
real affine space, in other words, the three conditions of Def. (2) are
satisfied.

In this case one says that the vectors of 

 

V

 

 act on the points of 

 

V

 

 by 

 

translation

 

 -
thereby giving rise to the affine space . In linear algebra one becomes
accustomed to regarding the 

 

vector v

 

 of the vector space 

 

V

 

 as an arrow, starting at the
point of origin. When 

 

V

 

 is regarded as an affine space, that is, , the 

 

point

 

 

 

v

 

should be regarded as the end of that arrow. 

To make the distinction between a vector space and its corresponding affine space
more visible, it is customary to talk of 

 

direction vectors

 

 when referring to elements of
the vector space 

 

V

 

 and 

 

position vectors

 

 when referring to elements of the correspond-
ing affine space .

 

3.2 Projective space

Def. 3:

 

Let 

 

V

 

 be an (

 

n+

 

1)-dimensional vector space. The 

 

n

 

-dimensional pro-
jective space 

 

P

 

(

 

V

 

) is the set of all non-zero subspaces of 

 

V

 

.

To each non-zero 

 

k

 

-blade  we can associate the linear span

. Hence we have the mapping from the set 

 

B

 

 of non-

zero blades to 

 

P

 

(

 

V

 

) given by

,

 

(3)

 

which takes non-zero 

 

k

 

-blades to 

 

k

 

-dimensional subspaces of 

 

V

 

. 

v w V∈, x X∈ v w+( ) x v wx( )=

0x x= x X∈

v V∈ vx y=

v x y= xy

v xy y x–≡ ≡

X V=

v V∈ w V∈ v °w v w+=

V V R, ,( )

V V R, ,( )

X V=

V V R, ,( )

B b1 b2 … bk∧ ∧ ∧=

B Linspan b1 b2 … bk, , ,[ ]=

B B B P V( )∈→∋
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As is well known, P(V) carries a natural lattice structure. Let S and T be two sub-
spaces of V.  We denote by   the subspace , and by  the subspace

. Moreover, let us recall the geometric algebra dual  of the outer product ,
defined by

. (4)

We can now state the following important result:

Prop. 2: Let A and B be non-zero blades in the geometric algebra G. Then 

(5)

Proof: See e.g. Hestenes & Sobczyk [(21)] or Svensson [(38)]. 

In the so called double algebra - also known as the Grassmann-Cayley algebra - the
lattice structure of P(V) is exploited in order to express the join (= sum) and meet (=

intersection) of its subspaces1. In order to obtain the same computational capability
within the geometric algebra , we can introduce an alternating multilin-

ear map called the bracket (or the determinant), given by

(6)

As an example, which we will make use of below, we have the following

Prop. 3: If , then

. (7)

Proof: Since both sides of (7) are multilinear in A, B, C, and D, it is enough to 
verify the equality for . This is left as a routine exercise.

4 The unified geo-MAP computational framework

As is well-known, the present day vector concept is surrounded by a great deal of con-
fusion, and we argued above that this is an indicator of its weakness of design. Symp-
toms range from the inability of students to discriminate between direction vectors
and position vectors to heated discussions among experts as to which type of algebra
that is best suited to represent vectors. Since any representational perspective has its
own inherent strengths and weaknesses, it is important to be able to move between
such perspectives in a consistent way, which means to remain within the same compu-
tational framework in spite of the change of representation. 

In this section we demonstrate how geometric algebra provides a common back-
ground for such movement. We will explain how this background can be used to han-
dle the interplay between euclidean (direction) vectors, affine (position) vectors and
homogeneous (sub-space) vectors - such as the ones used in projective geometry. 

1. See e.g. Barabei&Brini&Rota[(2)] or Svensson[(38)].

S T∧ S T∩ S T∨
S T+ ∨ ∧

x y∨ x̃ ỹ∧( ) I xI 1–( ) yI 1–( ) I∧= =

A B∧ A B  ,  if   A B∧∨ 0 ,= =

A B∨ A B  ,  if  A B∨∧ V  .= =

G e1 … en, ,( )

V … V   R→××
v1 … vn, ,( ) v1 … vn∧ ∧( ) I 1–→ v1 … vn, ,  .=

A B C D G3
1∈, , ,

A B∧( ) C D∧( )∨ A B C, , D A B D, , C–=

A B C D, , ,{ } e1 e2 e3, ,{ }⊂
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The technique for doing this we have termed geo-Metric-Affine-Projective unification.
It is important because it allows passing from the euclidean vector space algebra into
the Grassmann-Cayley algebra and then back again without changing the frame of ref-
erence. Later we will make use of the geo-MAP unification technique to compute
intersections of affine sets in cartesian coordinates.

4.1 Geo-MAP unification

Let V be a n-dimensional euclidean real vector space with the vectors  as

an orthonormal basis. Denote by G(I) the corresponding geometric algebra, where
. Moreover, let O denote an arbitrary (fixed) point of the affine space

. We can represent O by introducing a unit vector e orthogonal to

 and consider the geometric algebra G(J), with unit pseudo-scalar

. Then it follows directly from Def. (2) that for each affine point

 there is a unique vector  such that

. (8)

Moreover, the additive action of the vectors  is given by 

. (9)

Now, by construction, we have . Let us introduce the vector space
W with the corresponding relation to J :

. (10)

Then it is clear that

(11)

is an affine set in W. 

We now introduce the two mappings 

, (12)

and

. (13)

Note that   ensures that . Since the right hand side of (13) is invariant
under scaling of y, it follows that this mapping can be extended to  the 1-dimensional
subspaces of W (excluding the subspaces of V). Hence (13) induces a mapping from
the affine part of projective space:

. (14)

We can now make the following important observation:

. (15)

e1 … en, ,{ }

I e1e2…en=

V V R, ,( )
e1 … en, ,{ }

J Ie=

p V V R, ,( )∈ x V∈

p e x+=

x y V∈,

e x+( ) y+ e x y+( )+=

V G1 I( ) I= =

W G1 J( ) J= =

A e V+ e v : v V∈+{ }= =

V  x∋  x*→ e x A∈+=

W  \ V y y*→∋ y e⋅( ) 1– y e V∈–=

y V∉ y e 0≠⋅

P W( ) \ V{ } y   y* V∈→∋

*x( )* x e+( )
*

x e+( ) e⋅( ) 1–
x e+( ) e– x= = =
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The relation (15) embodies the essence of the unified geo-MAP computational frame-
work. It shows how to pass from a point x of euclidean space - via affine space - into
projective space, and then how to get to back again to the original starting point x. In
this way the upper and lower left star operators bridge the gap betweeen the metric,
affine and projective perspectives on geometry and unifies them within the same com-
putational framework.  The configuration is illustrated in Figure (1).

Figure 1. The unified geo-MAP computational framework.

Using the geo-MAP unification technique, we can start with a euclidean direction vec-
tor problem and translate it into projective space, where we can apply e.g. the tech-
niques of the double algebra in order to find intersections of affine sets. These
intersections can then be transported back to the euclidean representation and deliver
e.g. cartesian coordinates of the intersection elements. In the next paragraph will
apply the geo-MAP unification technique in this way. 

4.2 A simple example

To illustrate how it works, will now apply the geo-MAP computational technique to
the simple problem of finding the intersection of two lines in the affine plane.

Let  and let the two lines be determined respectively by

the two point-pairs . 

Making use of (7), we can express the point  of intersection between these two

lines as:

(16)

and the two brackets that appear in (16) can be written as:

(17)

and analogously

. (18)

e1

e

en V

A

Wx*

x

x*
_

y

*y

y
_

v0 v1 w0 w1 G1 e1 e2,( )∈, , ,

Vi v*
i   and  Wi w*

i   ,  i 0 1,= = =

pvw

pvw V0 V1∧( ) W0 W1∧( )∨( )
*

V0 V1 W0, , W1 V0 V1 W1, , W0–( )
*

= =

V0 V1 W0, , v0 e v1 e w0 e+,+,+=

 v0 w0– v1 w0– w0 e+, ,=

 v0 w0– v1 w0–,=

 v0 w0–( ) v1 w0–( )∧( ) e2e1=

V0 V1 W1, , v0 w1–( ) v1 w1–( )∧( ) e2e1=
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Writing and ,  (16) takes the form:

(19)

Here we have a good example of the geo-MAP unification technique at work. Taking
the upper star of the euclidean direction vectors w0 and w1, they are brought into the
affine part of projective space. Here they can be subjected to the double algebraic lat-
tice operations of  and , in this particular case in the combination expressed by (7). 

4.3 Expressing euclidean operations in the surrounding geometric algebra

We will end this section by showing how to embed some important euclidean direc-
tion vector operations within the surrounding geometric algebra G4 - namely the dif-
ference and the cross-product operations. In this way the ordinary euclidean algebra
of (cartesian) direction vectors can be emulated in geometric algebra.

Consider the euclidean direction vector  with its cartesian coordinate

expansion given by . Recall that  and .

By (14), the corresponding affine position vector  is expressible

as .

With these definitions of x and X, and the corresponding definitions for y and Y, we
will now deduce two formulas that connect the euclidean direction vector algebra of
Gibbs with the surrounding geometric algebra G4:

Prop. 4: The euclidean cross product vector can be expressed in G4 as: 

. (20)

Proof: From the definition of the cross product, it follows directly that

. (21)

Plugging  and  into the right-hand-side of (20) now gives

(22)

Prop. 5: The euclidean difference vector can be expressed in G4 as:

  . (23)

Proof: Expanding again the right-hand-side of (23), we can write

α V0 V1 W0, ,= β V0 V1 W1, ,=

pvw αW1 βW0–( )
*

=

 αW1 βW0–( ) e⋅( ) 1– αW1 βW0–( ) e–=

 α β–( ) 1– αw1 αe βw0– βe–+( ) e–=

 
αw1 βw0–

α β–
-------------------------- .=

∧ ∨

x G3
1 G4

1⊂∈

x x1e1 x2e2 x3e3+ += I e1e2e3= J Ie=

X V V R, ,( ) G⊂ 4
1∈

X x e+=

x y× e X Y∧ ∧( ) J=

x y× x y∧( ) I 1–=

X x e+= Y y e+=

e X Y∧ ∧( ) J e x e+( ) y e+( )∧ ∧( ) J e x y∧ ∧( ) J= =

 e x y∧( ) J x y∧( ) eIe x y∧( ) I 1–= = =

 x y .×=

y x– e X Y∧( )⋅=



8

  

Formulas such as (20) and (23) are useful for translating a geometric problem from
one representation into another. Moreover, since for a 1-vector v and a blade B we
have , it follows that (20)  and (23) can be combined into:

(24)

or

. (25)

The expression (25) indicates interesting relationships between ordinary direction
vector algebra and various forms of generalized complex numbers. However, to pur-
sue this topic further is outside the scope of the current text.

5 Applying the geo-MAP technique to geometrical optics

In order to illustrate the workings of the unified geo-MAP computational technique,
we will now apply it to a classical problem of geometrical optics. It was first treated
by Tschirnhausen and is known as the problem of Tschirnhausen’s caustics. 

5.1 Some geometric-optical background

Since light is considered to emanate from each point of a visible object, it is natural to
study optics in terms of collections of point sources. In geometrical optics, a point
source is considered as a set of (light) rays - i.e. a set of directed half-lines - through a
point. But a point source does not (in general) retain its ‘pointness’ as it travels
through an optical system of mirrors and lenses. When a point source of in-coming
light is reflected by a mirror or refracted by a lens, the out-going rays will in general
not pass through a point. Instead, they will be tangent to two different surface patches,

together called the focal surface of the rays1. 

The importance of focal surfaces in geometrical optics is tied up with a famous theo-

rem due to Malus and Dupin2. In order to understand what this theorem says, we
introduce a geometric property that is sometimes possessed by a set of lines:

Def. 4: A two-parameter family of curves K is said to form a normal congru-
ence, if there exists a one-parameter family of smooth surfaces Ω such
that each surface of the family Ω is orthogonal to each curve of the
family K. 

A surface in Ω is called an orthogonal trajectory to the curves of the family K. A point
field KP is of course an example of a normal congruence of lines, the orthogonal tra-
jectories being the one-parameter family of concentric spheres ΩP with centre P. Fur-
thermore, the rays of KP carry a direction, which varies continuously when we pass
from one ray to its neighbours. Such a family of lines is called a directed normal con-
gruence.

1. For a survey of the theory of focal surfaces, we refer the reader to Naeve [(31)].

2. see e.g. Lie [(26)].

e X Y∧( )⋅ e x e+( ) y e+( )∧( )⋅ e x y xe ey+ +∧( )⋅= =

 e xe ey+( )⋅ e ey ex–( )⋅ ey  and ex G2∈{ }= = =

 eey〈 〉1 eex〈 〉1– y x .–= =

v B v B∧+⋅ vB=

e X Y∧( ) y x– x y×( ) J 1–+=

X Y∧ e y x–( ) x y×( ) I+=
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Now, the theorem of Malus and Dupin can be formulated as follows:

Prop. 6: A directed normal congruence of lines remains directed and normal
when passing through an arbitrary optical system.

In optics, the orthogonal trajectories of the light rays are called wave fronts, and the
Malus-Dupin theorem can be expressed by stating that any optical system preserves
the existence of wave fronts.

5.2 Determining the second order law of reflection for planar light rays

In what follows below we will restrict to the plane and consider one-parameter fami-
lies of rays that emanate from a planar point source and then are reflected by a curved
mirror in the same plane. We will deduce an expression that connects the curvatures of
the in-coming and out-going wave fronts with the curvature of the mirror at the point
of impact. Since curvature is a second-order phenomenon, it is natural to call this
expression the second order law of reflection - as opposed to the first order law, that
expresses only the direction of an outgoing ray as a function of the direction of the in-
coming ray and the direction of the mirror normal.

Let us begin by recalling some classical concepts from the differential geometry of
plane curves.

Def. 5: Consider a one-parameter family of smooth curves F(c) in the same
plane (with c as the parameter). If there is a curve Γ which has the
property of being tangent to every curve of the family F(c) in such a
way that each point Γ(t0) is a point of tangency of exactly one curve
F(c0), then the curve Γ is called the envelope of the family of curves
F(c).

Def. 6: Consider a smooth plane curve M. At each point m(s) of this curve
there is an osculating circle with centre point r(s), called the centre of
curvature of the point m(s). When we vary s (i.e. when we move along
the curve M) the point r(s) will describe a curve E called the evolute of
the original curve M. Reciprocally, the curve M is called the evolvent
(or the involute) of the curve E.

In 2-dimensional geometrical optics, a point source of light corresponds to a pencil of
rays. After having been reflected or refracted by various mirrors and lenses, these rays

will in general be tangent to a curve, called a caustic curve in optics1.This is the kind
of bright, shining curve that we can observe when sunlight is reflected e.g. in a cup of
tea. 

Def. 7: A certain angular sector of a plane pencil of light-rays is made to be
incident on a smoothly curved mirror M in the same plane. After being
reflected by M, the light-rays of this sector are all tangent to the caus-
tic curve forming their envelope. Such a 1-parameter family of light-
rays will be referred to as a tangential sector of rays. 

Note: In view of the discussion above, we can conclude that the caustic curve of a 
tangential sector of rays is at the same time the envelope of the rays and the 
evolute of their orthogonal trajectories.

1. See e.g. Cornbleet [(7)] or Hecht&Zajac [(19)].



10

Let us consider a tangential sector of rays  with caustic

curve   whose rays are incident on a smoothly curved mirror M between the points

m(s1) and m(s2) as depicted in Figure (2).

Figure 2. The tangential sector L12 is reflected by the mirror M.

Two closely related rays l(s) and l(s+ds) will intersect in a point that is close to the
caustic curve Cin and when l(s+ds) is brought to coincide with l(s) by letting 
their point of intersection will in the limit fall on the caustic point p(s). Hence we can
regard the caustic curve passing through p as the locus of intersection of neighbouring

rays, where the term ‘neighbouring’ refers to the limiting process just described1.

Figure 3.  Two neighboring rays l(s) and l(s+ds) intersecting at p(s) and their 
respective reflections intersecting at q(s).

In Figure (3) the symbols t (=tangent) and n (=normal) denote euclidean direction
vectors, and m, p, q, r denote affine points (= position vectors). The symbol s denotes
the parameter that connects corresponding points and lines. The two rays l(s) and

1. This is an example of an intuitive (and very useful) way to think about geometrical entities 
that has been used by geometers ever since the days of Archimedes. Unfortunately it has 
no formal foundation in classical analysis. Since infinitesimal entities (like dx and dy) do 
not exist in the world of real numbers, a line in a continuous, (real), one-parameter family 
can have no neighbour. However, the concept of neighbouring geometrical objects can be 
made rigorous by the use of so called non-standard analysis.

L12 l s( )  :  s1 s s2< <{ }=

Cin

Cin
Cout

p(s1)
p(s2)

q(s1)

q(s2)

m(s1) m(s2)

L12

M

ds 0→

p(s)

m(s)

m(s+ds)-n(s+ds)

p(s)

m(s+ds)

t(s)

m(s)-n(s)

t(s+ds)

M

q(s)

r(s)

p(s)^

_

l(s)
l(s+ds)
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l(s+ds) can be thought of as forming an infinitesimal sector with its vertex p on the
caustic curve of l. Within this sector, the corresponding (infinitesimal) parts of the
wave-fronts are circular and concentric around p. The point p can therefore be
regarded as the focal point of this infinitesimal sector, i.e. the local focal point of the
wave fronts in the direction given by l(s). 

Having thus established some terminology and notation, we now turn to Tschirn-
hausen’s problem, which is concerned with determining the point q(s) on the reflected
caustic Cout that corresponds to the point p(s) on the in-caustic Cin. It can be solved by

making use of the theory of envelopes1, but here we will give a more intuitive and
straight-forward solution that makes use of the unified geo-MAP technique - in com-
bination with ordinary Taylor expansion - to compute a point of the reflected caustic
Cout as the intersection of two neighbouring reflected rays. 

From Sec. (4.2) we recall the expression (19) for the point of intersection of the two

lines determined by the two pairs of points  and , , where

the determinants α and β appearing in (19) are given by (17) and (18). 

For the sake of convenience (with respect to the computations that follow) let us fix
the coordinate system so that

. (26)

Note: Since the point m is to be considered as the point O of origin for the space of 
direction vectors, we will write p and q in order to denote the direction vec-
tors  and  respectively. This will shorten the presentation of the 
computations considerably. When we have finished, we will restore the cor-
rect direction vector expressions and present the desired result in a way that 
distinguishes clearly between position vectors and direction vectors.

Following these preliminaries, we will now make use of (19) to compute the point of
intersection q(s) of two neighbouring reflected rays.

From classical differential geometry2 we recall the so called Frenét equations for a
curve M :

(27)

Here t(s) and n(s) are the unit tangent respectively the unit normal to M at the point
m(s), and  is the radius of curvature of M at this point. 

Moreover, since s denotes arc-length on M, we have , and

(27) can be written in the form:

1. see Kowalewski[(23), pp. 50-54].

2. See e.g. Eisenhart [(11)] or Struik [(37)].

Vi v*
i= Wi w*

i= i 0 1,=

m s( ) O ,  t s( ) e1 , n s( ) e2–===

p m– q m–

ṫ s( ) 1
ρ
---n s( )=

ṅ s( ) 1
ρ
---t s( )  .–=

ρ ρ s( ) r s( ) m s( )–= =

ṁ s( ) t s( ) e1 s( )= =
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(28)

The reflected rays corresponding to the parameter values  and  are determined

by the two point-pairs  respectively , where the

points  and  are constructed by reflecting the point in the tangent

 at the point  respectively the tangent  at the point .

Using the reflection formula for vectors1, we can write

(29)

Suppressing the dependence of s and recalling from (26) that , (29) takes
the form

(30)

where O(ds2) denotes the well-known ‘big-oh’ ordo-class of functions f, that is

(31)

for some constant . Expanding the right hand side of the second equation
of (30) gives

. (32)

Now , and since , we have . Therefore we can

write

(33)

In order to make use of the intersection formula (19), we first compute

(34)

and

(35)

Moreover, if we split the vector p into the components  and make

use of the fact that , we get from (34):

1. See Hestenes [(20), p. 278]

ė1 s( ) 1
ρ
---e2 s( )–=

ė2 s( ) 1
ρ
---e1 s( )  .=

s s ds+

m s( ) p s( ),{ } m s ds+( ) p̂ s( ),{ }
p s( ) p̂ s( ) p s( )

t s( ) m s( ) t s ds+( ) m s ds+( )

p s( ) m s( )– e1 s( ) p s( ) m s( )–( ) e1 s( ) 1––=

p̂ s( ) m s ds+( )– e1 s ds+( ) p s( ) m s ds+( )–( ) e1 s ds+( ) 1–  .–=

m s( ) 0=

p e1 pe1–=

p̂ ṁds– e1 ė1ds+( ) p ṁds–( ) e1 ė1ds+( )– O ds2( )+=

f O ds2( ) f s ds+( ) f s( )– K ds 2≤⇔∈

K K s( )=

p̂ ṁds– e1 pe1 e1 pė1 ė1 pe1 e1ṁe1–+( ) ds+( )– O ds2( )+=

ė1 pe1 e1 pė1= ṁ e1= e1ṁe1 e1=

p̂ e– 1 pe1 e1 e1 e1 pė1– ė1 pe1–+( ) ds O ds2( )+ +=

 e– 1 pe1 2 e1 e1 pė1–( ) ds O ds2( )  .+ +=

α v0 w0–( ) v1 w0–( )∧ e2e1 ṁds–( ) p ṁds–( ) e2e1 O ds2( )+∧= =

 ṁds( ) p∧( ) e2e1 O ds2( )+– p ṁ∧( ) e2e1ds O ds2( )+= =

β v0 w1–( ) v1 w1–( )∧ e2e1 0 p̂–( ) p p̂–( ) e2e1∧= =

 p̂ p∧( )– e2e1 p p̂∧( ) e2e1 .= =

p ψ1e1 ψ2e2+=

ṁ e1=
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, (36)

and a rather lengthy but straightforward calculation gives

. (37)

Plugging (37) into (35) gives

. (38)

Finally, by making use of the intersection formula (19), we arrive at the following
expression for the local focal point of the reflected wave front correspond-

ing to the local focal point  of the incident wave front:

(39)

In order to restore this result - as we promised above - to a logically consistent and
coordinate-free form, we must now substitute  for p and  for q in (39).
Performing this substitution, we get

 (40)

Observe that if , i.e. if the mirror becomes plane, (40) reduces to the familiar

law of planar reflection:

, (41)

where the point is the reflection of p in the straight line mirror t that is tangent to the

mirror M at the point m. Hence, recalling that  and that

, we can express the relationship between the corresponding points

 and  in the following way:

(42)

This relation expresses the second order law of reflection for plane geometrical optics.
We summarize Tschirnhausens result in the following

Prop. 7: Let  be the caustic curve of a plane tangential sector of rays that is

incident on a plane-curve mirror M (located in the same plane) in such

α ψ2ds– O ds2( )+=

p p̂∧ 2 ė1 p2 ψ2+( )– e1e2 ds O ds2( )+=

β 2 ė1 p2 ψ2+( )– ds O ds2( )+=

q q s( )=

p p s( )=

q
1

α β–
------------- αw1 βw0–( ) 1

α β–
------------- α p̂ βm s ds+( )–( )= =

 
ψ1e1 ψ2e2–( )

1 2 ė1
p2

ψ2

------+
------------------------------------ O ds( ) .+=

p m– q m–

q m–
ψ1e1 ψ2e2–( )

1 2 ė1
p m–( ) 2

ψ2

-----------------------+
--------------------------------------------  .=

ė1 0→

qt m– ψ1e1 ψ2e2–=

qt

ψi p m–( ) ei⋅=

ė1 ṁ̇ 1 ρ⁄= =

p Cin∈ q Cout∈

q m –
p m–( ) e1⋅( ) e1 p m–( ) e2⋅( ) e2–

1 2 ṁ̇
p m–( ) 2

p m–( ) e2⋅
------------------------------+

------------------------------------------------------------------------------------------=

 p m–( ) t⋅( ) t p m–( ) n⋅( ) n–

1 2– ṁ̇
p m–( ) 2

p m–( ) n⋅
----------------------------

--------------------------------------------------------------------------------=

Cin
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a way that the ray which touches  at the point p is intercepted by M

in the point m, where the unit-tangent, unit-normal Frenét frame for
the curve M is given by the vectors t and n (according to an arbitrarily
chosen incremental parametric direction of M).  
Under these conditions, the point q which corresponds to p, that is the
point q where the reflected ray from m touches the caustic curve ,

is given by the expression

 . (43)

5.3 Interpreting the second order law of reflection geometrically

In order to illustrate the geometric significance of the second order reflection law
given by (43), we will interpret it in projective geometric terms. In Figure (4),

and q have the same meaning as before, and  denotes the result of projecting
the point r orthogonally onto the reflected ray through the point m with direction

.

Figure 4. Overview of the Tschirnhausen configuration.

Introducing the angle  between the incident ray of direction  and the

corresponding mirror normal , we note the following relations between the partici-

pating magnitudes:  

(44)

Taking (44) into accout, the reflection law (43) can be expressed as

(45)

and taking the modulus of both sides of (45), we can write

Cin

Cout

q m– p m–( ) t⋅( ) t p m–( ) n⋅( ) n–

1 2– ṁ̇
p m–( ) 2

p m–( ) n⋅
----------------------------

--------------------------------------------------------------------------------=

p p m, , r

mq q m–=

p
_

r
_

q

r

p

m

ϕ ϕ

ϕ pm m p–=

e2

qt m– m p–=

p m–( ) e2⋅ p m– ϕcos–=

r m– r m– ϕcos ρ ϕcos= =

p m– p m–  .=

q m– p m–
2 p m–
ρ ϕcos

-------------------- 1–
-----------------------------=
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. (46)

The sign in the left hand side of (46) corresponds to the sign of the denominator in the
right hand side of (45). 

Since, by (26), our coordinate system has its point of origin at m, the for-

mula (46) expresses the fact that the points  and  separate the points  and  har-
monically, that is, these two pairs of points constitute a harmonic 4-tuple. This is the

form in which Tschirnhausen presented his reflection law1.

6 Summary and conclusions

6.1 The geo-MAP unification technique

In Sec. (4.1) we introduced the unified geo-MAP computational framework - inspired

by classical projective line geometry.2 We then demonstrated how the geo-MAP
framework provides a way to represent the metric (= euclidean), affine and projective
aspects of geometry within the same geometric algebra, and how this representation
creates a computational background for performing coherent shifts between these
three different geometrical systems. 

In (12) we showed how to pass from a euclidean point (= direction vector), to the cor-
responding affine part of projective space, and in (13) we showed how to get back
again from the finite part of projective space to the original euclidean point that we
started with. The proof that this works was provided by (15). Formulas (12) and (13)
are key formulas underlying many of our later computations. Because of their great
practical utility in combining the powers of the ordinary euclidean direction vector
algebra with those of the Grassmann-Cayley algebra, we feel that they should be of
particular interest to the engineering community. 

In Sec. (4.3) we showed how to embed the basic (euclidean) direction vector algebra
into the surrounding geometric algebra. The formulas (20) and (23) - combined in
(24) or (25) - illustrate the interplay between the euclidean operations of vector addi-
tion and Gibbs’ cross-product on the one hand - and the operations of geometric, outer
and inner product on the other. Such formulas as these we have not seen anywhere
else. 

As an illustrative application of the unified geo-MAP computational technique, we
applied it in Sec. (5) to a classical problem of plane geometrical optics called
‘Tschirnhausens problem’, which is concerned with determining the envelope of the
rays from a point source of light after their reflection in a smoothly curved mirror.

Using the geo-MAP technique in combination with ordinary Taylor expansion, we
computed the desired envelope as the locus of intersection of  ‘neighboring’ rays, i.e.
rays that differ infinitesimally from one another. In this way we deduced the expres-
sion (43), which could be termed the “second order law of reflection”, since it
expresses the curvature relations between the in-coming and out-going wave fronts
and the curved mirror.

1. See Kowalewski [(23). p. 51].

2. see e.g. Sauer [(34)], Naeve [(28)] or Naeve & Eklundh [(30)]. 

1
p m–

----------------
1

q m–
----------------± 2

ρ ϕcos
---------------- 2

r m–
---------------= =

e1 e2,{ }

p q m r
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Although, in the planar case, the same result can be achieved using envelopes, the
geo-MAP framework has the advantage of being applicable in higher dimensions. For
example, in 3 dimensions, it can be used in order to perform the corresponding com-
putations - relating the points on the respective focal surfaces of an in-coming and
out-going normal congruence of rays to the corresponding points on the focal surface
of the normals to the mirror. However, the complexity of such computations have
made it necessary to exclude them here. 

6.2 Algebraic & combinatorial construction of a geometric algebra. 

As a didactic comment on how to teach geometric algebra, we present - in the appen-
dix - a constructional proof of the fact that the ‘expected basis elements’ of a geomet-
ric algebra G -i.e. the set of finite subsets of its formal variables - actually do form a
basis for G. This is done in Prop. (8) and Prop. (9), leading up to Def. (10), where we
define a geometric algebra by constructing it. 

Our construction enables the possibility of a logically self-contained description of
geometric algebra which does not require such high levels of abstraction as in the tra-
ditional tensor algebra approach, and which should therefore be accessible to a wider
audience. In our opinion, the main reason for the lack of such a presentation in the
present literature is the difficulties encountered in establishing a vector space basis for
a geometric algebra.

Using this approach to presenting geometric algebra, we do not have to worry about
the question of whether there exists any algebraic structure that is capable of imple-
menting the desired specifications. We are therefore free to take the ‘basis approach’,
both to defining different operations on the algebra as well as to proving their struc-
tural properties. In our opinion this greatly simplifies a deductive presentation of geo-
metric algebra to students. 

7 Acknowledgements

We want to express our gratitude to professors Jan-Olof Eklundh and Harold Shapiro
at the Royal Institute of Technology in Stockholm/Sweden, for providing the support-
ive environment in which we have been able to perform our academic research over
the years. We also would like to thank professor Gerald Sommer at the Christian-
Albrechts-University in Kiel/Germany for inviting us to contribute to this book. 

8 Appendix: Construction of a geometric algebra

Let R be a commutative ring, and let {E, <} be a totally ordered set.   The non-com-
mutative ring of polynomials over R in the formal variables E is denoted by R{E}, and
the set of monomials and the set of terms in the ring R{E} is denoted by M respec-
tively by T. 

Moreover, let , and let  be a mapping from T to R

with values in S, i.e. .

Def. 8: We say that the pair is an involution in the term t, if there

exist terms  with  such that either  or

Notation: The number of inversions in the term t is denoted by inv(t). 

S 1 0 1, ,–{ } R⊂= sgn :T R→
t( ) S R⊂∈sgn

e e',( ) E2∈
t' t'' t''', , t t'et''e't'''= e' e<

e' e  ,  sgn e( ) 1–= =
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We now define a mapping  in the following way:

• .

• , if m contains at least two occurrences of some e ∈ E with sgn(e)=0. 

•  otherwise.

We also introduce a reduction rule →, i.e. a binary relation on T by making the fol-
lowing

Def. 9:  , where , if there exist terms  and 

such that , , and where

, or

.

Notation: If no  exists in T such that , we write , and

if  we write .

By inspection, we observe that

, (47)

and that

. (48)

From (47) and (48) we can conclude that if , we have

. (49)

We can now state the following

Prop. 8: For each t in T there exists a unique in T, 

such that .

Proof: We start by proving uniqueness. If  then obviously .

Let , where . Then, by inspection, ,

where , and is the set of e:s in E occurring an odd

number of times in m. If this set is empty, we put . Hence,  is unique.

Moreover, which shows that  is unique. This finishes
the uniqueness part of the proof.

For the proof of the existence part, we observe that if , then we have

(50)

Hence every reduction chain  is finite, which proves the existence of .  <<>>

From Prop. (8) we can directly conclude:

µ : T R→

µ rm( ) rµ m( )  ,  where  r R ,  m M∈∈=

µ m( ) 0=

µ m( ) 1–( ) inv m( )=

t t'→ t t' T∈, t1 t2 T∈, e1 e2 E∈,

t t1e2e1t2= e1 e2≤

t' t1e1e2t2  ,  if  e1 e2<–=

t' e1( )sgn t
1
t2  ,  if  e1 e2= =

t' t t'→ t
 

t t1 … tk→ → → t * tk→

inv m1eem2( ) inv m1m2( ) inv ee( ) 2N   ,  for some N N∈+ +=

inv m1e2e1m2( ) inv m1e1e2m2( ) 1  ,  if  e1 e2<+=

t t'→

µ t( ) µ t'( )=

t' red t( )=

t t'
 

→

µ t( ) 0= µ t'( ) 0=

t rm * r'→ m'
 

= µ m( ) 0≠ m' e1e2…en=

e1 e2 … en< < < e1 … en, ,{ }

m' 1= m'

µ t( ) rµ m( ) r'µ m'( )= = r'

t1 t2→

deg t1( ) inv t1( ) deg t2( ) inv t2( )+>+

t * tk→ t'
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Prop. 9: Let B denote the set of monomials m in R{E} such that . Then B is

in one-to-one correspondence with the set of finite subsets of E. 

Notation: Let Bn denote the set of monomials in B of degree n. The R-modules gen-
erated by B and Bn are denoted by G and Gn respectively.

We now turn G into a ring by introducing an R-bilinear mapping (multiplication)

(51)

in the following way:

By R-bilinearity, it is enough to define  for . We do so by defining

. (52)

We then have

, (53)

and

. (54)

Since is unique, it follows that the product  is associative.

Def. 10: The ring  is called a geometric algebra (or a Clifford algebra).

Notation: The product  is called the geometric product, and it is usually written as 

a concatenation. Following this convention, we will from now on write xy 
for the product , i.e.

(55)

We can reformulate Prop. (9) as

Prop. 10: Let G be a geometric algebra over R with formal variables E. Then G
has an R-module basis consisting of the set of all finite subsets of E.

Moreover, it can be shown that the following holds:

Prop. 11: Let  be another set, totally ordered by <´, and let the mapping

 satisfy the condition , where

 and .

Then  and  are isomorphic as geometric algebras.

One way to establish this isomorphism is to show that if J is the ideal generated by

, then G is isomorphic to .

m
 

G G G→×
x y,( ) x°y→

m1° m2 m1 m2 B∈,

m1° m2 red m1 m2( )=

m1 m2m3
* m1 m2° m3( ) * m1° m2° m3( )→→ red m1 m2m3( )

 
=

m1 m2m3
* m1° m2( ) m3

* m1° m2( ) ° m3→→ red m1 m2m3( )
 

=

red m1 m2m3( ) °

G °,( )

°

x°y

xy x°y≡

E′

′  : E′ R→sgn card E
s( ) card E′s( )=

E
s

e E : sgn e( ) = s∈{ }= E′s
e′ E′ :  ′ e′( )sgn = s∈{ }=

G G′

e2 e( ) ee′ e′e  :  e e′ E  ,  e e′≠∈,+,sgn–{ } R E{ } J⁄
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