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Introduction

Motion constitutes one of the most important cues in our visual perception of
the surrounding world. Hence, understanding motion is of great interest also in
machine vision. Image motion may be due to object motion or viewer motion.
Deriving object motion from image sequences is therefore a crucial problem in
computational vision and a substantial amount of work has been devoted to this
subject, see e.g. [2] — [9].

In this paper we study the problem of estimating the motion of a plane or a planar
patch. Important contributions to this topic have been made by Tsai, Huang and
Zhu who in [4], [5] and [6] concern themselves with determining the 3D-motion
parameters of a rigid planar patch from two matched images of some of its points.
In [5], using trigonometric representation of 3D orthogonal matrices and carrying
out a number of ingeneous calculations, they arrive at explicit formulae for the
motion parameters, given eight so called pure parameters of the motion. And in [6]
they show that the observation of four points is enough to determine these eight
pure parameters.

Although this work is solid and well carried out, we feel that it suffers from some
serious limitations. First, the formulae derived in [5] are valid only under the
assumption that all points on the planar patch are in front of the image plane
before and after the motion (a fact which is explicitely stated in [5]). This is
an artificial restriction which may not be true in a practical application e.g. in
robotics.

Second, the sufficiency of a four-point match between the two images of the planar
patch is presented as the result of an involved argument whereas it is really an
immediate consequence of the fundamental theorem of projective geometry.

These two points illustrate the general weakness of computat.ional (as opposed to
conceptual) solutions to a problem: They tend to introduce unnecessary restric-
tions and they tend to obscure the underlying mathematical structure.

In this paper we present a conceptual solution to the moving plane problem which
removes the restrictions of [5]. To emphasize the structural aspects of our solution,
we present it in n-dimensions, as this introduces no extra difficulty. Since we want
explicit motion formulae we must of course also handle some computations. The
point is that we are able to introduce them at a later stage thereby retaining
conceptual clarity as long as possible.
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Mathematical formulation of the problem

Let us begin by establishing some notation. The real n-dimensional, euclidean
vector space will be denoted by R™. Vectors will always be denoted by latin letters
and scalars will always be denoted by greek letters. [z1,. .., ] denotes the linear

span of the vectors {z;,...,2,}, and [z4,...,%;,...,%,,] denotes the linear span
of the vectors {z1,...,Zi 1, ZTiy1,- > Tm}-

Let us now assume that we are “looking” at (n + 1) distinguishable points of
a (n — 1)-dimensional hyperplane 7, in R™ not containing the origin. This of
course means that we are given (n + 1) distinct directions from the origin (eye)
represented by the vectors z; € R*,: = 1,...,n 4 1. We also know that for some
positive scalar ay, the point a;z; is in 7,. If we furthermore assume that the
(n + 1) considered points are in general position, then we will be able to observe
that [z,,...,%;,...,Z441] = R™, Vi. Now suppose that the hyperplane is moved to
a new position 7, (also not containing the origin) by some unknown isometry S
of R". Since the (n + 1) points are individually identifiable, to each old direction
z; there will correspond a new direction y; € R™ and to each old positive scalar «;
there will correspond a new positive scalar 3; such that the point B;y; is in 7y, And
since the old points o;z; were located in general position, the new points B;y; will
also be so situated which means that we will have [y;,...,§i,.-.,Yns1] = R, Vi.

The problem at hand can now be stated thus: Given the information presented
above, to what extent can we determine the initial and final positions #, and Ty
of the moving hyperplane, i.e. what is the set of all motions

{R" 5 «, N 7y € R™}
compatible with our observations?

Mathematically, this amounts to the following formulation:

(1) Given: vectors z;,y; € R* , i=1,...,n+1 , n>3
such that: Vi =1,... ,n+1
[:Ll,...,:z“:;,...,:z:n_‘_l]:R"

[yl,...,g;,...,yn+1] =TR"

Find: The collection of all
;>0 , Bi>0 , i=1,...,n+1
U orthogonal n X n matrix with detU =1

teR”

peER"

such that: Ve =1,...,n+1
(1) Uaz; +t = By
(‘ll) pT(Ol,':I:,') =1

e Y I o V]

Here we have used two well known facts:

¢+ Each motion S can be uniquely decomposed into a rotation U around the
origin followed by a translation ¢.

1t Since 7, does not contain the origin, its equation can be normalized to pTz = 1.
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From now on we will deal exclusively with the mathematical formulation (1) of
our problem.

Note that this formulation does not assume the existence of a solution since no
compatibility conditions are introduced between the {z;} and the {y;}.

Reformulating the problem

Before trying to solve problem (1) it will be useful to subject it to some reformu-
lation in order to deal with the main difficulty involved, which is the non-linearity
of the relationship between a;z; and B;y; as expressed in (1):(2).

First of all let us make the following observation:

(2) Under the prerequisites of problem (1) it follows directly from the funda-
mental theorem of projective geometry that there exists a unique (pair of)
non-singular linear map(s) L (and —L): R* — R"™ with |det L| = 1 such
that Lz; € [y;]-

Furthermore, a number of matching points which is smaller than n + 1
does not determine this map whereas a larger number overdetermines it.

For more information on this subject see e.g. [1].

We can now formulate the following key lemma which relates the vectors a;z; and
B:y; in a linear way:
LEMMA:

(3) If @;,B;,U,t and p solve problem (1) and if L is the map described in (2)
then there exists a unique A € R such that

)\La;m;=ﬂ,~y; , t=1,...,n+1.

PROOF': see appendix.

This lemma will now allow us to reformulate problem (1) in terms of matrix
calculus. By a series of suitable “coordinate transformations” the solutions to (1)
will all be made to satisfy a certain matrix equation involving an unknown rank-1
perturbation of the identity, whose product with its own transpose is supposed
to equal a known diagonal matrix. An independent scalar-valued condition on the

desired perturbations will also be deduced, leading up to the equations expressed
in (14).

Let (z1...2;i...Zn+1) denote the n x n matrix whose column vectors are {z;,.
Tio1,Tit1,---,Tne1} and let

ey

(4) e; =sgn(det((zy...Zi. . . Tus)(Y1 - Ti- - - Yns1)))

It is easily seen that a necessary condition of compatibility for the existence of a
solution is given by the demand that

(5) €; =¢ independentlyof: , Vi=1,...,n+1
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which is a fact that can be checked a priori from the initial data.

By the previous lemma we know that if a solution exists we must have
ALaiz; = By
But a; > 0 , B; > 0 which together with (4) and (5) implies that
(6) | : sgn(det\L) = ¢
To summarize:
€ is known (from image data). L is calculated by (2) with |detL| = 1. If n

is odd we choose det L = € and A > 0 and if n is even we choose A > 0 and
det L = € is given automatically.

Therefore we can without loss of generality assume that
(7) A>0 and detL =¢
By the lemma (3) and (i) of (1) we now have

Moz, =piyi=Ua;z;+t=
= Ua,-.'z:,- + tpTa;:r,- =
=U+tp")azy) , i=1,...,n+1

This gives

(8) M =U+tpT =U{I 4+ UTtpT) =
= U(I +up")

where we have put v = U7t

Multiplying (8) with its transpose leads to
(9) NLTL = (I + pu”)(I + up”)

Diagonalizing the symmetric, positive definite matrix LT L:

LTL=vTDV
82 0
D= , 6#£0 , VIv=r
0 82
and substituting
a=Vp
b=Vu
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gives us back in (9):
(10) MVTDV = (T4 VTabTV)T + VTba™V) =
= VT(I 4 abT)(I + baT)V

Multiplying (10) by V from the left and VT from the right we arrive at the following
equation:

(11) A2D = (I + abT)(I + baT)

where A and D are known quantities and a and b are to be determined.

To get another equation connecting the unknown vectors a and b we can make use
of the formula

(12) det(I 4+ abT) =1+ a7b
which is easily established.
Now, since by (8):
AL =U(I+up")=U(I +VTb"V) =
=UVT(I + ba")V
taking determinant of both sides, we get from (7) and (12):
(13) : A"e =1+ a%b
To sum up:

We have shown that solving problem (1) can be done by finding all vectors
a,b € R" that satisfy the equations:

I+ abT)(I+baT) =)D
” L+ oI + )
14a'b= A"
where
(AL=U+tp?" =U({I +up”) , u=UTt
€= sgn(det((a:l o Zicn o)1 Bie e Yat1)))
(15) <detL=6 , A>0

52 0
ITL=vfDpVv |, D= , 6:#£0 |, i=1,...,n

0o &

n

la=Vp , b=Vu

It is clear from the previous discussion that any solution to (1) must also solve (14)

via the substitutions (15). Which of the solutions to (14) that are also solutions
to (1) will be established explicitely in each separate case.

609



Computing solutions

Solving (14) in the general case of non-zero translation will be done by another
reformulation (26) which displays the two dimensional character of our problem.
(26) in turn will be solved by parametrizing it in a way which expresses the
solutions as the four points of intersection between a circle and an ellipse (35).

Finally, by unwinding the sequence of substitutions involved, these points will be
“decoded” and checked for compatibility with the constraints thus leaving two
different solutions (modulo scaling) to problem (1) in the generic case.

The case of pure rotation

Since, by (1):(iz) we have p # 0 and since a = Vp, it follows that a # 0. Hence the
only trivial solution to (14) is given by b = 0. In this case (14) reduces to

AND =] (X6=1 , Vi=1,...,n
]_:An'e 1___An€

Since e = +1 and X > 0, it follows that e = A = 1 and hence
D=1
By (15) we then have

LTL =1 |, ie. L isorthogonal
detL=e=1
t=Uu=UVTb=0

Hence the motion S is a pure rotation
S=U

and from (15) it is given by
U=1L

Conversely, if LTL = I,det L = 1 then it follows from (15) that
D=1 , e=1, A=1, t=0 , U=1L

Hence the case of pure rotation corresponds exactly to the observable parameter-
values:

(16) LTL=1 , detL=1

Note that p is completely undetermined which means that the initial position of
the hyperplane . could be anywhere.
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The case of non-zero translation

In this case we have ¢t # 0, and we can without loss of generality assume that
|t| = 1, which by (15) is eqmvalent to

(17) ol =1

To simplify the structure of equations (14) let us observe that if we take any vector
¢ € R" such that c € [a, b]* we have

(18) MDc=c

which means that 1 is an eigenvalue of A\’D with (algebraic) multiplicity >
dim[a, b]* > n — 2. Hence we can renumber the eigenvectors of A2D so that

A*é] 0
262
(19) ND = 1
0 1

Furthermore we have
(20) det ITL = 1 = det D = 6262(§2)"2
where
(21) 6=163=- =5n=§
which means that
(22) 6,6, = 6™

Note that (19) implies that our problem is really 2-dimensional!

Also note that in R" for n > 3 problem (1) has no solution in the generic case. By

(19) we are demanding that n — 2 eigenvalues of A2D be equal which is a highly
non-generic condition.

Now, by (19) we can choose a basis of R” so that

a; bl
as by
(23) a=|0| , b=|0
0 0

Let us introduce new variables v,w € R? and a new 2 x 2 matrix D by
— {4 _(H = 1 52 0
(24) v—(az) ’ w~(bz> » D= 52 (0 62)
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and observe that (17) and (23) imply
(25) ol =1

Summing up, we see that solving (14) is equivalent to solving the equations

(1) (I 4+ vwT)(I +wvT)=D
(26) (32) 1+vTw=¢e6"
(i1d)  {Jw| =1

for the unknown vectors v,w € R2. (¢,8 and D are known from image data.)

To solve (26) we will make use of the so called Sherman-Morrison formula:

1
27 T-1 _ 1 _ T
(27) (I +vw") I T 7w’

Remembering that 1/e = ¢, we get from (27) and (26):(42)
(28) (I 4+ vwh) ™! =TI —ebvw®
Note that by (26):(i;)' this inverse will always exist.
Multiplying (26):(:) by wT(I — vwT)~! from the left gives us
(29) wT + oT = (w? — e6"wTvwT)D
and transposing (29) leads to
(30) w+ v =eé"Dw
where we have made use of the fact that

1- e&"v‘T'w =1—eb"(ef" —1) =¢€b"
Hence, from (30) we can express v in terms of w:
(31) v=(e"D — Nw

Plugging (31) into (26):(i1) and making use of the indentities w”w =1 and €? = 1
we get :

(32) wl§ " Dw =1
Letting

62

ot = 7726 = {by (22)} =

2

(33) .
o = 6776 = {by (22)) = &7

1
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we finally end up with the equation

(34) wT (O‘f 02)w:1

0 o3

Hence we have transformed (26) into the system

(35) dw? +dwl=1
w? + w% =1

where w = (3;) = (2;) is unknown and a; and a, are given by (33).

This is the ellipse-circle-intersection formulation that we promised earlier.

Classifying solutions

We are now finally in a position to express the solution of problem (1) through
(33), (26) and (14). Before doing this let us observe that by (15), (27) and (14) we
have

(36) U=M(I +up®)™ =
= AL(I ! =
- 1+ pTuup -

1
=AL(] - ——upT) =
( 1+aTbup)

= 1 7
= AL(I TeoUP )

Hence we ‘can collect the relevant solution formulae in terms of a and b:

'pz‘/Ta
u=VTh
(37) \ 1
= A\L(] — —up?
U L(I Yo UP )
(t=Uu

where A, e, L and V are computed directly from image data.

Solving (35) leads to six different cases:

I (a2=1, a2 #£1):

In this case we immediately get

wp =0 , wi=1
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Hence

where 1 = +1 or —1.
Now, by (31) '
v = (6262 — 1) ((1)) = {by (33)} =

= pesma 1) (§) = wiet — 1) (1)

Unwinding our substitutions we get from (23) and (24)

1 1
(38) a=pesm =1 | 0| , b=y]|°
0 5

But from (15) we have
(39) , p=VTa
and by (1):(i7) we have
(40) pTxl >0

where , is known from image data.

Hence 9 is determined and thus also a and b. Substituting (38) into (37) therefore
gives the unique solution to problem (1) in this case.

IT  (2#£1, a2=1):

This case is reduced to case I by interchanging index 1 and 2.

111 (e =a2=1): | |

In this case we get from (35) that all w with |w| = 1 are solutions.

Hence by (33)

(41) b=6,=6

and by (31)

(42) v=(esm2 (% 9)- Nw=
= (e6" - Dw

Hence we must have

det(I +vwl) =14 0vTw=14e6"—1=ceé"
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But according to (26):
det(I 4+ vwl) = eb™

Hence
ed" =¢€eb™"

§? =1

and since 6§ > 0 we conclude that § = 1.
Thus we can rewrite (42)

v={(e—1)w

and by (23) and (24) we have the solutions

wy
W2
(43) a= (5 - l)b , b= 0 ) |wl =
0
Now, since by (15)
(44) p=VTa=VT(e-1)
and since by (1):(i3) p # 0, we must have
(45) - e=—1
Hence by (44)
p=—2VT}
and since u = VTb we get from (8):
(46) AL =U(I+VTobTV(-2)) = UVT(I — 2067V

But since by (17) [b| = 1, (I — 2bb7) represents a reflection in [b]*. Hence
(I —26b7)™! = (I — 20b7)

and we get from (46):

(47) U= ALVT(I - 2067V

Note that since U is orthogonal, and since by (15) and (45) det L = —1, it follows
from (47) that

{A:l
(48)

L is orthogonal with det L = —1

Hence (48) is an a priori condition for case III
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IV, (e2>1, a2>1):

This immediately implies
w =wy =0

which violates (35).

Hence there is no solution in this case.
V (&2 <1, a2>1):

Same conclusion as in case IV.

VI (o2<1<ad):

This is the generic case. It gives a priori four solutions for w:

2 l 2
aj; —1 1—ay
49 w, ==+ wy = %
(49) ! a% —a? ’ 2 o —a?

and by (31) each one of these gives a solution for v.

Letting w; > 0,w; > 0 in (49) we can collect our solution-candidates

o= (2) (2 1) 1(2) |
() 10 16 12

Note that these four cases can each be expressed by multiplying the vectors of case
1 by respectively the matrices

(50) ((1) (1)) , ((1) —01) ’ (_01 (1)> ’ (—01 —91

Denoting by S an arbitrary matrix from. this set, we observe that if v,w are
solutions to (26) we have

vV =

(I + Sv(Sw)T)I + Sw(Sv)T) = S(I + vwT)(I + wvT)S =
=SDS=DSS=D
and
1+ (Sv)T(Sw)=14+0T7STSw=14vTw

as well as
| |Stw| = fw] = 1

Hence the four solutions to (35) are also solutions to (26) and by analogous
calculations also to (14).

Let w denote one of these solutions, e.g. the one with w; > 0,w; > 0 in (49), and
let v denote the corresponding solution for v.
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All solutions to (26) are then of the form Sv, Sw, and letting

v w S
1
(51) a= |2 , o=|?| , s .
0 0 1

all solutions to (14) are of the form Sa,Sb, where S is one of the matrices
corresponding to (50) via (51).

Going back to the original problem (1) and collecting the relevant expressions we
have the four different solution-candidates

p=VTSa
u=VTSh
t=Uu

U=AL(I+up®)™ = AL(I+VTSbaTSV)™?

But since the four S-matrices of (50) are pairwise negations of each other and
since by (39) and (40) we cannot have both p and —p as a solution to (1), two of
the candidates can be ruled out by the simple sign check (40) in the image, thus
leaving two solutions to problem (1) in the general case.

Conclusion

We have presented a general solution to the moving hyperplane problem which
emphasizes the structural aspects but which is also suitable for computations.
This has been achieved by combining the conceptual power of projective geometry
with the computational power of matrix calculus. We have chosen not to present
our solution formulae as explicit expressions in the original variables in favour of

a more algorithmic approach in order to facilitate their translation into computer
programs.
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