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Abstract

The purpose of this paper is to introduce the basic concepts of the Double Algebra
and illustrate its potential use in Computer Vision. We give some very simple examples
of projective invariants, i.e. quantities which do not depend on the specific coordinate
system and which are invariant under projective transformations. We show how the
Double Algebra provides a natural algebra for projective geometry, which is much closer to
synthetic geometry than the usual coordinate algebra. Roughly speaking, it is an algebra
for the meet and join operations in projective geometry. It can be used to list all projective
invariants on a finite number of points and lines in the projective plane.
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1 Introduction

The purpose of this paper is to introduce the basic concepts of the Double Algebra and to
illustrate its potential use in Computer Vision and Robotics. The double Algebra is the
natural framework for projective geometry. Roughly, it is an algebra for the meet and join
operations of projective geometry which is much closer to synthetic geometry than ordinary
coordinate algebra. After a short historic background we will construct the algebra and state
the main results. No proofs will be given, but they can be found in the references. We
will show, through some examples, how it can be used to find all projective invariants for
finite point-line configurations in the projective plane. Examples are also given of projective
invariants on planar curves. We strongly believe that this beautiful piece of mathematics
could provide a powerful tool in Computer Vision and Robotics.

2 History and Background

Geometry, according to Klein, deals purely with properties invariant under some group of
transformations. However, in most of the applications geometric problems are formulated in
coordinates with respect to some basis. This leads quite often to polynomial equations in
several variables, that seldom admit treatment by elementary methods. Sometimes, when
there are only a few variables, these polynomial equations can be handled using the powerful
tools derived from the theory of Grobner bases. There are two obvious drawbacks with this
approach. Firstly, we introduce non-invariant expressions, and secondly the polynomials,
especially those of the Grobner basis, do not possess a natural interpretation in geometrical
terms.

Hilbert showed-Hilbert’s Finiteness Theorem— that, under certain mild assumptions on
the group of transformations, there always exists a finite number of invariant polynomials —a
complete set of invariants— such that all invariant polynomials can be expressed as polynomials
in these.

Let V be a vector space over some field K with a basis {e;,...,e,}, and let z; € K™ be
the coordinates for v; € V with respect to this basis. The determinant of the n X n matrix
(z1,...,%y) is denoted by [vq,...,v,] and is called a bracket (it certainly depends on the
basis). If T : V + V is linear we see that

[Tvi,...,Tv,] = det(T)[vy,. - ., vs]

Thus [v1,...,v,] is an invariant under the special linear group on V.

Projective Geometry deals with properties which are invariant under the Special Linear
group, i.e. linear transformations with determinant one. The First Fundamental Theorem
of Projective Geometry states that these brackets constitute a complete set of invariants. If
m vectors vy, ..., v, are given, and m > n, there are (7') of them. In ”bracket algebra” all
brackets are treated as formal variables between which there are certain algebraic relations
~the so-called Pliicker-Grassmann syzygies. There is a famous algorithm —the straightening
algorithm- by which all bracket polynomials can be written in a normal form. Recently
(1990), Bernt Sturmfels showed that the straightening algorithm is in fact a normal form
algorithm with respect to a certain explicit Grobner base for the Pliicker-Grassmann ideal.
The polynomials in this Grébner basis is the so-called Van der Waerden syzygies and the
monomial order is the Tableau order.



In the late 19** century, mathematicians tried to develop an algebra of n-dimensional
space, analogously to the representation of R? with complex numbers, in which geometric
operations could be carried out using purely algebraic operations. In 1844, Hermann Grass-
mann’s ”Die lineale Ausdehnungslehre” was published. There, he introduced an algebra for
the join and meet operations of projective geometry. Unfortunately, his work was not fully
understood until recently, when Marilena Barabei, Andrea Brini and Gian-Carlo Rota in 1985,
wrote an article "On the Exterior Calculus of Invariant Theory”, Journal of Algebra 96, pp
120-160. They formulated Grassmann’s ideas in a modern mathematical terminology, which
give a natural framework for projective geometry.

3 Peano Spaces

The Italian mathematician Peano was probably the first to realize the deep importance of
brackets (G. Peano, “Calcolo Geometrico Secondo 1’Ausdehnungslehre di H. Grassmann”,
Fratelli Bocca Editori, Torino, 1888.)

Definition: A Peano space is an n-dimensional vector space over a field KX, together with a
non-degenerate, alternating, n-linear form [ ] called the bracket.

Thus

1.[ ]:V* > K, TiyeooyTny — [T1,...,Ty]

2. [z1,...,2,] is linear in each variable.

3. [z1,...,2,] = 0 if two of the z;’s are equal.

4. [z1,...,2,) # 0 for some z,,...,z, € V"

Let e = e1,...,€, be some basis for V and let y; € K™ be the coordinates of z; € V with

respect to e. Then
[271,. . 'vmn] = det(yli' . "yn)

is a bracket on V.
If Ais an n X n matrix, then

det(Ayy,. .., Ayn) = det(A)det(yy, . .., yn)

Hence [ ] is invariant under the Special Linear Group on V of linear transformations with
determinant one. It is easy to see that all brackets are of the above form for some basis.

3.1 Some examples on the use of bracket in P!(R) and P?(R).

Here, we will assume that the reader is familiar with elementary pro jective geometry.

1. The double ratio in P!(R).
Consider four points z,z3,23,74 on P}(R). As usual, we consider them as nonzero

points in R? (homogeneous coordinates). Define

[1‘1, 1?3][332, 1‘4]

D($1,$2,$3,$4) = [231 z4][w2 1‘3]
9 b

where [ ] is some bracket on R?. We note that



¢ D(Tz,,Txy,Tx3,Txs) = D(z1,2,23,24) for all invertible T : R? — R? and

o D(azy1, 0929, 033, ay4) = D(1,22,73,24) for all nonzero ;’s in R.
D is in fact the well-known double ratio (z;z3 : T423)

2. An invariant on six points in P%(R)
Let z4,...,z¢ be six points in P%(R) considered as six nonzero vectors in R3. Suppose
also that, for some arbitrary choice of bracket in R3,
[1:27 3, 1175] 7’L' 0 7/: [1:17 T4, mG]

Then

F($1,$2,$37 T4,Ts, iEs) = [zl’ 23 155][$2, L xG]
[$2,$3,$5][$1,1‘4,$6]

is an invariant under all invertible linear transformations on R3. Moreover, F is invariant
under scaling i.e.
F(ayzy,...,a626) = F(z1,...,76)

for all nonzero a;’s in R.

3. An invariant on five points in P%(R).

Put z5 = z¢ above and define G(zy,z2,73,24,25) = F(zy,79,23,24,25,25) which is
clearly invariant.

4. A projective invariant on a smooth non-convex curve I' in the plane.

Consider a planar curve as in figure 1:
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Figure 1: A projective invariant on a smooth curve T

Draw the double tangent L and the two inflexion lines L; and L,. The points a, b, c,d, e
are constructed as indicated in the figure. Then

[a’ b? C][d, e’ a’]
[a,b,d][c, e, d]

is a projective invariant on I.



5. The quadric through five points in R%(R).
Let z1,...,z5 be five points in P?(R) and put for z € R%(R)
E(IB) = [xla T3, 1‘5][(82, T4, 1:5][3727 I3, (E][II:], T4, .’II]—[.’ltg, T3, :ES][:EI, T4, .’135][111, I3, (E][(L‘2, T4, :l)]
Then E(z) is a homogeneous nonzero polynomial of degree two such that

E(z1) = E(x2) = E(z3) = E(z4) = E(z5) = 0

6. The double ratio of 4 points on a line in P%(R).

Let z1,x2,z3 and z4 be points on a line in P?(R) not containing 5. Then one easily
verifies that G(z1,z2, %3, %4, 25), where G is as in the third example, is independent of
x5. Therefore, it is the double ratio of four points on a line in P?(R).

7. A projective invariant on two disjoint planar sets M and N in P%(R).

The points a, b, c,d, e are determined as it is indicated in the figure below:

Figure 2: A projective invariant on two disjoint planar sets M and N.

Then
[a,b,c][d, e, a]

[a’ b’ d][c’ e’ a]

is a projective invariant.

Remark: The above examples are just very simple illustrations of how easy it is to find
projective invariants in an almost automatic manner. Note that every expression of the form

T N
T

in which every vector, denoted by a dot inside the brackets, occurs the same number of times
in the numerator and the denominator, is a projective invariant. What is extremely important

is that every invariant can be built up by combining expressions of this form. This means
that we can list them all.




4 Projective Geometry and the Double Algebra.

In this section we will in detail construct the Double Algebra, essentially as suggested in the
paper of Rota et al. Though no proofs are given, the mathematically sophisticated reader
should have no difficulties in doing them as exercises. We conclude the section with some
examples showing how close the Double Algebra is to Synthetic Geometry and how easy it is
to use.

Let V be a vector space over a field K of dimension n. The projective geometry on V is
the set P(V') of all subspaces of V.

The join AV B of two subspaces A and B is the least subspace of V containing both A
and B. Hence,

AVB=A+B={a+b:a€ Abe B}

The meet A A B of two subspaces A and B is the largest subspace of V contained in both
A and B. Hence,
AANB=AnNBRA

These operations turn P(V) into a lattice.

The double algebra G(V), that we shall construct below, will be a vector space over K
endowed with two algebraic operations —deliberately, called meet and join and denoted by
the same symbols V and A — which correspond to the meet and join operations on P(V) in
a very nice way. Some objects in G(V'), called extensors, will correspond to well defined
subspaces in P(V'). In fact, if the set of extensors is denoted by E(V') we will define a mapping
E(V)— P(V), E(V)> X — X € P(V) such that if X and Y are in E(V) we have

XVY=XVvY if XAY =0 and XAY=XAY if XvYV=V

Philosophically, G(V') can be regarded as an algebraic background against which P(V') can
be seen more clearly. Proofs of statements in P(V') are easier to do in G(V') with its richer
structure. The price we have to pay is that not all objects in G(V) can be interpreted in
P(V).

4.1 The construction of G(V).

As before, we let V' be a Peano space of dimension n with a bracket [ ]. The following
statement is easily verified:

[21,...,2,] = 0 <= {z1,...,7,} are linearly dependent.

Elements zy...z% in V¥ = V x ... x V are called monomials of degree k. If X
Zy...2¢ and Y = y;...y, are monomials, their product XY is the monomial Z = XY =
Ty...TkY1 ... ye in VFH, This product extends to the set

S(V) = {Z a;m; :a; € K and m; is a monomial}

of formal finite linear combinations of monomials, in the following distributive manner

(o) (50 ~Ftm

i’j



These definitions turn (V') into the free associative algebra generated by V. Elements in the
set Sy(V)={Saim;:a; € K, m; € V4} are called homogeneous of degree d.
We extend the domain of the bracket to S,(V) by

D aimi] =Y ailmi]
We now introduce an equivalence relation ~ on S(V') by the following reduction rules:
e X ~0if X € Sk(V)and k> n
e X~0if X €S5,(V)and [X]=0
¢ X ~0if [XY] =0 for all monomials ¥ such that XY € S,(V).

These reduction rules mean that monomials z 25 - - -z, where the vectors 1, z,,...,, are
linearly dependent are considered to be zero. Moreover, if z and y are vectors in V then zy
and —yz are considered equivalent.

The exterior algebra G(V') on V is now defined as S(V') together with the reduction rules
above, i.e.

GV)=5V)/~

The product that G(V') inherits from S(V) we denote by V and call it the join. The set of
monomials E(V) in G(V) are called extensors and those of degree k, k—extensors. The set of
k—extensors is denoted by Ex(V'). Hence,

Ex(V)=V¥/~  E(V)=UgEx(V)
The reader should have no difficulty in verifying the following;:

1. If {z1,...,zx} and {y1,...,¥yx} are bases of the same subspace, then

TyV..Vzg=c-y1 V...Vyr forsome ce K.

2. 21 V...V =0if and only if {zy,...,zx} are linearly dependent.

. lfzyV...Var =c-y1 V...Vyr #0, then {z1,...,2x} and {y1,...,yx} are bases of the
same subspace.

If X =z;V...Vxzi € Ex(V), then the linear span of {z;,...,z4} is denoted by X. We thus
have a mapping
Ey(V) — P(V)

such that if X € Ex(V)\0then X € Py(V), where Py(V) is the set of k-dimensional subspaces
of V.
Theorem 1: Let X and Y be extensors, then

XvY=XVvY if XAY =0

Note again, that we use the same symbols for the join and the meet in G(V') and P(V).
In order to define the meet operation on G(V) we need some further notation.
Let s < t be positive integers and put

A(t,s):{/\:(/\l,...,/\,):13)\1<)\2<"'</\3_<_t}



The complement A° of A € A(¢, s) is the element of A(¢,¢ — s) such that
AUX = {00 A = {1, 2,...,t)

The sign of the permutation (A1,..., A5, Af, ..., A{_;) of (1,2,...,t) is denoted by sign(X, A°).
IfX =zyV---Viz; € E(V) we define for A € A(t, s)

Xy=z)\ V-V € EyV)

At last, we can define the meet X AY of X € Ex(V) and Y € Ey(V), provided that k+£ > n
by

Definition: XAY =3 sign(X, A)[ XA VY]X)e

where the sum is taken over all A € A(k,n — ¢).

It is not obvious, but X AY is in fact an extensor in Egqe—n(V).

Remark: There is another equivalent definition of the meet, namely

X AY =) sign(A, X)X V Y)Y,

where the sum is taken over all A € A({,k+£€—n). Incasek+{<n weput X AY =0.
The meet and join operations are extended distributively to all of G(V). The geometric

meaning of the meet is clarified by the next

Theorem 2: Let X and Y be extensors, then

XANY=XAY if XvY=V

Observe also that every linear operator T : V' + V extends in a canonical manner to G(V)
by:
T(z1V...Var) =Tz V...VTzy

It follows that for extensors X and Y
T'(XVvY)=TXVTY and T(XANY)=TXATY

To be able to do calculations in G(V) we introduce a basis e = {ey,...,e,} for V. Put
E=eVerV...Ve, and let X € Ex(V). Then [X V E,], where A € A(n,n — k), is called
the A-coordinate for X. There are (,",) = (}) such coordinates and they are called the
Pliicker—Grassmann coordinates relative to the basis e.

To summarize: We have constructed an algebra G(V) with two products called the meet
A and join V, which correspond to the meet and join operations in the projective geometry
P(V'). Subspaces of dimension k in P(V') correspond to k-extensors in G(V). Two nonzero
extensors correspond to the same subspace if and only if they are proportional.

4.2 Some Examples

We give some simple examples of the practical use of the meet and join products in planar
projective geometry. This list could of course be made much longer and also include higher
dimensions. These examples illustrate how easy it is to construct invariants. In fact, to any
finite configuration of points and lines in P?(R), it is almost trivial to write down the list of
all projective invariants for the configuration.



1. Suppose two lines A and B and two points a and b are given generically in P?(R). Then

Figure 3: A projective invariant for a pair of lines and a pair of points.

the expression
[AVa][BV b

[AVO][BVq|

is a projective invariant for the configuration.

2. Consider three pairs of points in P?(R), see figure 3. We want to express in terms of

D«

Figure 4: Three lines passing through the same point

the double algebra that the lines joining these three pairs pass through the same point
p. The line joining a with b is ¢ V b and similarly for ¢V d, e V f. The intersection of
aVbwithevdis

p=(aVb)A(cVd)=|a,c,dlb-[b,c,d,]a

The point p lies on e V f precisely when [p, e, f] = 0. Hence, we get
[P,e,f] = [a,c,d][b,e,f]— [b7cad][a7e’f] =0

Hence, the lines a V b, ¢V d and e V f meet in a point in P?(R) if and only if
[(l, ¢, d][b> €, f] = [b7 ¢, d][a7 € f]

3. Formulation of the well known five point problem in Computer Vision:

Suppose that five points a, b, ¢, d, ein R® are moved rigidly to new positions a’, ¥, ¢/, d,e.
If the motion were a pure translation the five lines joining a with a’,...,e with ¢’ would be



parallel. We therefore see that for some 3 x 3 rotation matrix U, the five two—dimensional
subspaces

avVUa bVUY cvUd dvUd evUe

intersect in a one-dimensional subspace ¢. (Note that ¢ is the translation direction and
U the rotation part of the motion.) By the example above we, thus, have

la,b,Ub|[Ud',z,U2") = [Ud',b,Ub[a,z,Uz'] where T =c,d,e
We can rewrite this as
la,b,Ub)[a',UTz,2") = [, UTH,¥][a,z, Uz] where = =¢,d,e
Note that the above equations are homogeneous in a,d’,...,e,e’ and U. A well-known

representation of the 3 x 3 rotation matrices, for which —1 is not an eigenvalue is

1 T4 uf —ud—ud  2(ugug — u3) 2(urus + ug)

- 9 1 2_ .2 .2 9 _
1+u¥+u§+u§ (uqug + u3) + uf — uy — uj (uquz — uy)

2(uquz — ug) 2(ugusz + ug) 1+ uf - uf - uj

For given values of the projections of a,b,c,d and e we get three polynomial equations
in uy,ug,us of degree 4. It took less than three minutes to calculate a Grobner basis
for this system (in degree reverse lexicographic order). In a future paper we will use a
recent algorithm by Donald Pedersen to calculate the exact number of real solutions of
these equations, which moreover satisfy certain further inequalities arising from physical
conditions of the problem.

. As we saw, the equation of a quadric through the points a,b, ¢, d, e is given by
E(z) = [a,c,e][b,d,e][b, c,z][a,d,z] - [b, c,€][a,d, €][a,c,z][b,d,z] = 0
The tangent line at a is obtained by taking the derivative with respect to

T, = [a,c,€][b,d,e][b,c,a)(aV d) — [b,c,€][a,d,e][b,d,a](aV c)

. Find the equation of the quadric in P?(R) that has tangent A in a, tangent B in b and
passes through the point c.




Here A and B are lines or 2-extensors and a,b,c are points or 1-extensors, such that
AVa=BVb=0.It can be verified that the homogeneous polynomial

E(z)=[aVvbV ) [AVe][BVz]-[aVvbVz] AV |[BV (]

satisfies our requirements. Clearly E(a) = E(b) = E(c) = 0. Taking derivatives, the
tangent to £ = 0 at a is found to be

T, =[aVbVc][BVa]A = constant - A
and the tangent at b is

T, =[aVbVc]*[AV b]B = constant - B
which was what we wanted.
. The quadric, in line-coordinates, tangent to five given lines.
c —
D

A B

&=

Given five lines in P%(R), A, B,C, D, E where A, B,C, D and E are 2-extensors in R3,
ie. A,B,C,D,E € Eo(R®). Then ANBAC,AANBAD,edt.c. are 0-extensors, that is
real numbers. It is easily verified that

(ANCAE)(BADAE)(BACAX )(AADAX) = (BACAE) ANDAE)ANCAX )(BADAX)

By introducing some basis we get the quadric in line-coordinates.

. A projective invariant on six lines in P%(R).

dimensional subspaces in R, or lines in P?(R). Then

(ANBAC)DAENAF)
(AANBAD)CANEAF)

is a projective invariant on these lines. Note that AA BA C, e.t.c. are 0-extensors, i.e.
real numbers. By putting F' = A, we obtain a projective invariant on five lines.
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8. A projective invariant on a non-convex curve in P%(R).

We consider again a curve as in the figure below. The extensors A, B,C,c,b, D are
indicated in the figure below. Then the double ratio of the points (BAC,b, BAD, A\ B)

C

is projectively invariant.

These examples demonstrate the usefulness of the presented formalism. The examples are not
worked out in detail, but the interested reader should be able to complete them by employing
the theory developed in the previous sections.
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