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Abstract

 

This paper introduces a computational framework -  termed 

 

discrete integration

 

 -
which presents an algebraic interpretation of integration that captures the combinato-
rial aspects of the fundamental theorem of calculus at a finite level. This facilitates
discrete approximations of integrals that are evaluated over smooth geometric config-
urations, since it enables their numerical approximation within the same conceptual
space. It also makes possible a discrete version of the differential and integral calculus
over various function classes. We illustrate these ideas in the case of polynomial func-
tions - establishing a scale-invariant way to compute with sums of polynomials

defined on simplexes
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.

 

1 Discrete integration

 

We develop the computational framework of discrete integration in terms of what we
call the 

 

endomorphic integral

 

. At the time when we worked out these ideas we were
not familiar with the work of Sobczyk in this field, but in retrospect we have come to
realize that our ideas constitute a natural extension of his work into the arenas of com-
plexes and endomorphisms, which explains the qualifier ‘endomorphic’ for the inte-
gral and differential that we introduce in Def. (5) and Def. (6).

Apart from their intrinsic mathematical interest, we feel that this kind of integral and
differential are quite powerful as computational engineering tools, and we demon-
strate their combinatorial power in Prop. (2), which we call 

 

the combinatorial version
of the fundamental theorem of calculus

 

. 

 

2 Basic definitions

 

Consider a geometric algebra , and let  be the linear space
of its 1-vectors. It is easy to verify the following

 

Prop. 1:

 

The set of even permutations of 

 

n

 

+1 objects acts naturally on the car-

tesian product , and therefore induces an equivalence relation 

 

∼

 

on it.

Using this proposition, we can now make the following

 

Def. 1:

 

The set  of 

 

n

 

-simplices is defined as .

The set 

 

S

 

 of all simplices is defined as  

 

1.Since we have not fixed a notation for the polynomial example, we cannot at this point supply
any formulas on this part.

G G E( )= V G1 E( )=

V n 1+

Sn Sn V n 1+   ∼⁄=

S Sn
n 0≥
∪=
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Def. 2:

 

A 

 

complex

 

 is a formal finite linear combinations of simplices with
integral coefficients. Thus the set 

 

C

 

 of all complexes is defined as 

, 

 

(1)

 

where 

 

Z

 

 denotes the set of integers, and .

 

3 The boundary operator 

Def. 3:

 

Consider an 

 

n

 

-simplex , i.e. , and let

, where  indicates deletion of .

The boundary operator 

 

∂

 

 is defined on 

 

S

 

 by:

 

(2)

 

and extended to 

 

C

 

 by linearity.

 

Note:

 

It is a simple exercise to verify that 

 

4 Connecting 

 

C

 

 with 

 

G

 

We will now define a geometric measure  called the 

 

directed content

 

 of each sim-
plex, a measure that has been introduced by Sobczyk. The directed content of a sim-
plex captures both its direction and its magnitude in the form of a single multivector.
We extend the measure  to 

 

C

 

 by making the following

 

Def. 4:

 

The 

 

Z

 

-linear mapping  taking 

 

n

 

-simplices to 

 

n

 

-blades is
defined by

 

(3)

 

Note:

 

It is easily verified that  is well defined, i.e. if  is an even permutation on 

, then we have

 

(4)

 

By a straight-forward calculation one also obtains .

 

5 Definition of the endomorphic integral

 

With 

 

End

 

 (

 

G

 

) denoting the ring of endomorphisms of 

 

G

 

, we start by introducing:

 

(5)

C  Z
S
⊕  C

n 0≥ n⊕= =

Cn  Z
Sn

⊕=

s S∈ s v0 v1 … vn, , ,[ ] Sn∈=

si v0 … v̂i … vn, , , ,[ ]= v̂i vi

∂s 1–( )isi
i 0=

n

∑=

∂°∂ 0=

σ

σ

σ : C G→

σ v0[ ] 1=

σ v0 v1 … vn, , ,[ ]
1
n!
----- v1 v0–( ) … vn v0–( )∧ ∧=

σ π

1 2 … n, , ,{ }

σ vπ 0( ) vπ 1( ) … vπ n( ), , ,[ ] σ v0 v1 … vn, , ,[ ]=

σ°∂ 0=

Ψ HomZ C G,( )     ,= Ω HomZ C End G( ),( )=
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Def. 5: The endomorphic integral  ∫  is a mapping defined by the diagram

Now, for , we let  denote multiplication with x from the right, i.e.

Before we define the endomorphic differential, we introduce the sets

(6)

and the sets corresponding to (5):

(7)

Def. 6: The endomorphic differential  is defined by

(8)

We are now in a position to state the following combinatorial version of the funda-
mental theorem of calculus:

Prop. 2: The endomorphic integral and the endomorphic differential, are
related to any complex and its boundary by the identity

(9)

Proof: From (8), which defines the endomorphic differential, we have directly:

(10)

Since this holds for each participating simplex in the linear combination c, by linear 
extension it must hold for the complex c itself, which proves the theorem.       <<>>

Ω                Ψ

ω              ∫ω : C                  G 

c                  ∫ω = ∑cs ∫ω = ∑csω(s)[σ(s)] 
∈

∈ ∈

c s s

∈

s

∫

x G∈ ρ x( )

G              End(G)

x               ρ(x) : G               G 

y                yx 

∈

∈

ρ

∈

∈

S* s S : σ s( ) is invertible∈{ }     ,= C*  Z
S*
⊕=

Ψ* HomZ C* G,( )     ,= Ω* HomZ C* End G( ),( )=

d  : Ω Ω*→

dω s( ) x[ ] ω°ρ σ s( ) 1– x( )
∂s
∫ 1–( )iω si( ) σ si( )σ s( ) 1– x[ ]

i
∑= =

ωd
c
∫ ω

∂c
∫=

ωd
s
∫ dω( ) s( ) σ s( )[ ] 1–( )iω si( ) σ si( )[ ]

i
∑= =

 1–( )i ω
si

∫
i

∑ ω
∂s
∫= =


