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Abstract

In this paper we focus on some combinatorial aspects of Clifford algebra and show
how this algebra allows combinatorial theorems - like e.g. Sperner’s lemma - to be
“built into the algebraic background”, and become part of the structure of the algebra
itself. We also give an example of how cumbersome combinatorial proofs can be
“mechanized” and carried out in a purely computational manner.

I ntroduction

In his monumental and groundbreaking Ausdehnungslehre [4] from 1844, Herman
Grassmann set out to build an “agebra for everything” - an algebra which he illus-

trated by various geometric examplest. Being both far ahead of his time and on the
outside of the academic mathematical community, Grassmann’s ideas received little
attention during his own lifetime. However, during the last years of Grassmann’s life
(late 1870s), his ideas were taken up by William Clifford [2], [3], who developed the
algebrathat today bears his name. In more recent times mathematicans and physicists
- notably Marcel Riesz [8], Gian-Carlo Rota[1], [9], and David Hestenes[5], [6], [7] -
have rediscovered and continued this development. Hestenes has focused on the geo-
metric aspects of Clifford algebra - introducing the synonymous term geometric alge-
bra - and shown how it provides a powerful geometric language that serves as abridge
between mathematics and physics.

In this paper we aim to connect with Grassmann’s original ideas, and follow Rota[9]
by focusing on the purely combinatorial aspects of Clifford algebra.

Some notation and background

Since we are only interested in combinatorial and algebraic aspects of Clifford alge-
bra, we will allow our scalars to lie in an arbitrary commutative ring R with unit ele-
ment. We will also take a dlightly different point of view regarding the Clifford
algebra and itsinterpretation.

Let X be a finite set which is totally ordered, i.e. X = {x,,...,x,} , where
X <X, <... <x,.We will identify the k-base-blades x,x,....x,. with the k-subsets
{xy .-, x,} and denote the pseudoscalar x;x,...x, by X. The ring-unit 1 is identi-
fied with the empty set 00 . We will view the Clifford algebra Cl(X) as the free R-mod-
ule generated by the power-set O (X) of all subsetsof X, i.e. C1(X) = DD(X)R .

Notethat if X - Y isabijection, then CI(X) isisomorphic to CI(Y).

1. Forinstance, thetoday familiar concept of vector isan example of what Grassmann termed
evolution. See [4], p. 46.



We will always assume that x> =1 , Ox O X. The set of k-vectors is denoted by
Clk(X). We observe that every bilinear map C1(X) x C1(X) - CI(X) is uniquely
determined by its values on [0 (X) x O (X) . Moreover, if Pis a proposition, we will
use (P) to denote 1 or 0 depending on whether Pistrue or false.

Let A,B 00O (X). Thefollowing notation is used below:

Geometric product: AB = eAAB,
where € = +1 and A denotes symmetric difference.

Outer product: AOB = (AnB=0)AB.
Left inner product: ADB = (A OB)AB.

Scalar product: A*B = (A=B)AB.

AT = (_1)\E _ oA
Reverse: AT = (-1)"A,wheree = 0,0

Complement: A = AX".
All of these definitions are extended to CI(X) by linearity.

Below we will need the following simple
Lemmal: xO(yOz) = (x0Oy)dz , Ox,y,z0OCI(X).

Proof: By linearity, it is enough to verify thisfor base-blades, i.e. for x = A,
y = B,z = C where A, B,C 00 (X). Thisisasimple exercise (using e.g. Venn
diagrams), which we |leave to the reader.

If CI(X) and CI(Y) are two Clifford algebras over the same ring, we call alinear and
grade preserving map T : CI(X) - CI(Y) an outermorphism if T(1) = 1 and
T(xOy) = TxOTy, Ox,y OCI(X). The obvious fact that an outermorphism on

CI(X) is uniquely determined by its values on X will be implicitely used below in all
our definitions of various outermorphisms.

Thedual T of T isdefinedby T(x) = T(xX)X .
We will also make use of the following fundamental theorem, due to David Hestenesk:

Prop.1: If T : CI(X) - CI(Y) is an outermorphism with adjoint T*, then
xOTy = T(T*x Oy).

1. Hestenes & Sobczyk [7], p.69, (1.14).



Clifford algebras and graphs

Let G = (V,E) be a (undirected) graph with vertices V = {v, ..., v} and edges
E = {e,, ...,e,} . Choose atotal ordering onV according to the given enumeration.
This induces a direction on G, by letting an edge ¢ O E that connects the vertices
v,v' 0V bedirected from vto v' if v<v'.

We now form the two Clifford algebras CI(V) and CI(E) with v; = e; = 1, and
for v, v'OV, e OE, wedefinethemappingg: (VOE)xV - {-1,0,1} by

g(v,v) = (v and v' areneighbors), and
gle,v) = (e endsat v) - (e startsfromv) .

Moreover, we define the following outermorphisms:
A
CI(V) —— CI(V)
V o ——> 2g(v, V)V, forvOV.
vav
)

Cl(V) —— Cl(V)
vV —> val(v) v, whereval(v) isthe valence of v.

aE —2 aw)

e ——> 2g(eV)v,forellE.
vV

aD
av) —2 aE

vV ——> 2g(eV)e,forvOV.
eE
Since (de)xv = Z g(e, V)V'xv =g(e, V),
and ex0%(v) = e*%Eg(e',v)e' =g(e,v),

we seethat 3" isthe adjoint of 9.

The Laplacian of the graph G is defined as the outermorphism

A = 900* :CI(V) - CI(V) .

We immediately obtain the following relation between A, 6 and A :
Prop.22 A =03-A.

Proof: A direct computation gives
— %k — — ] [
(v) = 0:0%(v) = ae%Eg(e, v)e = e>E1:E V%vg(e, v)g(e, v)v' =



Z.(gle,vigle, v) =1)v' — Z (g(e,v)g(e,v) = 1)V’
val(v)v —%g(v, vV = 0(v)—A(v).

One also easily shows the following®

Prop. 3: trA=0, tr FA = |E|, tr DA = (=2)(# 3-cycles in G).
Moreover, there is the following useful

Lemma?2:. If thegraph G = (V, E) containsacycle, then 0E = 0.

Proof: Weidentify Ewith e e,...e, . Assumethat G contains the cycle

Vi Vo oo Vi Vi BUE v =V = (v =V _ ) F (Vi = VZa) o (v V).
Therefore (v, —v,) 0...0 (vi—vi /B (v,—v,) = 0, which meansthat

0E = 0(e,e,...e,) = 0(e; Oe,00 .0 e,) containsaA-factor 0. Hence 0E = 0.

The converse of lemma2 iscontained in

Lemma3: Let G = (V, E) be a graph with |V| = n,|E| = m and write
V = v,v,...v,. If Fisa(n-1)-subset of E such that the edges of F

form atree (i.e. no cycles), thenwehave v O(0F) = 2V, Ov OV,
where the sign isindependent of v.

Proof: To show that v O(0F) isindependent of v, it is enough to show that

v' O(0F) = v" O(0F) if v' and v" are connected by an edge - say f - in F. But if
of = v"—v',itfollowsthat (v"—v') J(0F) = @ f) O(0F) =0 (fOF) = 0.
Moreover, sinceFisatreeand |F| = n—1, Fisaspanning tree for G and hence con-
tainsdl the vertices of V. Let v have neighbors v', v", ... . Then we have
vO(V=v)D (v'=vll ... = vOvO vI ... and hence, by applying the same
argumentto v', v", ... weget v O(dF) = £V, which finishes the proof.

We note in genera that if F O E, then two vertices v' and v arein the same compo-
nent of Fif and only if (v"'—v') O(0F) = 0.

We are now ready to prove a well-known and nice result about the number of span-
ning trees in a given graph. Our proof shows the computational power inherent in
applying Clifford algebra to graph theory.

Prop.4: If A

900* : CI(V) - CI(V) is the Laplacian outermorphism, then

A*Y = NO , where N isthe number of spanning treesin G, and
O: CI(V) - CI(V) isgivenby O(v) = %vv‘ =s,0Ov0OV.

1. the proof of whichisleft to the reader.



Proof: From the definition of the adjoint, we have AY = A+ = AL Moreover,

Aadj(}’) = %V(x*(AadJy))x , Oy OV . Hence we must show that x*(Aadjy) =N,
X

Ux,ydVv.

Applying the definitions, we get

x#(8™y) = xx(Ay) = xx(A(yV)V) = K(A(yV)VD . Now, since A isgrade-

preserving, xA(yV) isapseudoscalar and thus commutes with VT . Hence we have

x#(8™y) = KAYVIVID = DVIxA(YV)G = (VIx)*(A(yV))
= (VIx)*0(9*(yV)) = 0" (VIx)*d*(yV) .

Now, Vx and yV are (|V| —1) -vectorsin CI(V), and since 8 and 0* are grade-pre-
serving, 0*(V'x) and 0*(yV) are (|V| —1) -vectorsin CI(E). Expanding these vec-
tors, and summing over all (|V| —1)-vectors F O E , we get

x+(A*y)

0" (VIx)x9*(yV) = (>F:(0*(V*X)*F)FT)*(%(G*(YV)*FT) F)
{;((VTX)*OF)((YV)*OFT) = {;((XV)*OFT)((YV)*@FT)
Z ((xV)*dF)((yV)*0F) = I (9F0 (xOV))(IF O (yOV)) .

Applying lemma 1, we get
xx(A*y) = Z (F Ox)V(OFOy)V = VZ}F:(XD6F)(y 09F) .

Now, by lemma2, 0F = 0 unlessF isaspanning tree, and, by lemma 3, in this case
wehave x J0F = y 00F = £V . Hence, remembering that N denotes the number of

spanning trees in G, we have x = (A*Yy) = Vi z (x 0OF)® = V'N = N, which
p
finishes the proof.

Combinatorial algebraic topology

Let V denote an arbitrary finite set, and let A = {a, ...,a} . Let Z be the ring of
scalars and consider the two Clifford algebras CI(V) and CI(A) over Z with

vZ=1,vOV.ada? = 1,a,0A.

A labeling of the elements of V by the elements of A isamappingA:V - A.
Any such labeling is naturally extended to an outermorphism A: CI(V) - CI(A).

Define the outermorphisms 0y, : CI(V) - ClI(V) and 0, : CI(A) - CI(A) by
0y(x) = ( %VV YO x and 0,(y) = ( DZAa ) O y respectively.



We now define the content mapping Cont and the index mapping Ind by

Cont
cawv) — z
X —> Al A(X)

Ind
cawv) — z
X ——> adedy(X)

where

Cl(A) —> CI(A)
y —> (1. 0y .

Note that a(Cl“'l(A)) 0 Z . We now have the following
Prop.5: Ind = 0oAedy = Qedjeh = (—l)n_ICont.

Proof: Consider then-blade x = v,v,...v, inCI(V) andlet v denote deletion of
v. We now have

Aohody(x) = QoA( (v, + ... +v,)O(v,...v,)) = aoA(Jz_(—1)1‘1V1...$j...vn)

a(Z (-1 A(v) O..OAVE O A(v,))
(-1 (ay_ya) DA(V) OO AGE O A(v)) -

Moreover, we have

aed oA(x) = (a,_;...a;)0((a; + ... +a,) O (A (v;)0..0 A(v,)))
= ((a,_y...a,) O(a, + ... +a.)) O(A(v,) O...0 A(v,))
= (a,_,...a,a,) * A(x) = (=1)""'Cont(x) .

We must consider the following two different possibilities:

1) If A isinjectiveon v, ..., v, , we can WLOG! assume that A(v;,) = a,, Oi. We
then have

aorody(x) = Z(=1) (a,_..a) OA(v) DO AGE O A(vy)
= (-)""Ya,_,...a))0(a, 0..0a,_,) = (-)"",
Cont(x) = (-1)" '(a,a,_,...a,) * (a,...a,) = (=1)"7".

2) If X isnot injectiveon vy, ..., v, , we can WLOG assume that A(v,) = A(v,).In
this case we get

1. Without Loss Of Generality.



aohody(x) = E(-1)' (a,_;..a) D) OO AGE O A(vy)
(a,_...a)) O(A(v,) OA(v3)D .0 A(v,)
—(a,_;...a)) DA (v,) OA(v3)D .0 A(v,))

:O’

Cont(x) = (a,...a;) * (A(vy) OA(v,)Dd .0 A(v,) = 0.

This proves the proposition.

Hence we have the following commutative diagram:

cnv) LN cIm(v) A CIY(A)

>

9
z cra) —2 s aria) 25 7

Remark: From this index theorem there follows immediately several basic resultsin
combinatorial topology, notably the so called Sperner’s lemma.

Koszul complexes

We like to finish by presenting an example from algebra where we hope to illustrate
that it may sometimes be a good idea not to restrict the scalars of the Clifford algebra
toonly R or C, but to allow them to liein arbitrary commutative rings with unit.

Let | and Jbetwo idealsinsuch aring R generated by {x,, ..., x,} and {y,, ...y}
respectively. We also assume that JUJ1 , i.e that y; = Zc;;x; for some ¢;;in R.

i
Below we are going to use Clifford algebra to define the famous Koszul complexes
K(xy, ..., x,) and K(y,, ..., y,) » which have alot of applicationsin algebra and dif-

ferential topology.

We will also give an almost trivial proof of the well-known fact that there exists a
chain-complex morphism K(y,, ..., v,,) - K(x;, ..., X,), which is an isomorphism

of chain-complexesif I = J.

We start by introducing setsE = {e,, ...,e} andF = {f,, ..., f,} andtheir associ-
ated Clifford Algebras CI(E) and CI(F) over the ring R. We may assume that
e =f =1,0i]j.

1

Let T: CI(F) — CI(E) be the outermorphism defined by Tf; = Zc;;e;, and denote

jivie

by T*: CI(E) - CI(F) the outermorphism defined by TYe, = Ze;f;.

Then we have T*e; * f; = c¢; = ¢+ Tfj, s0 T* is the adjoint of T. Moreover, if

e = xe; +...x,e, and f = y,f, +...y,f, ,weobtain T*e = f.

m !



Let us introduce the two “boundary” mappings d. : C1(E) — CI(E) and
dg: CI(F) - CI(F) by d.(x) = e0x , Ox OCI(E) respectively d;(y) = fOy ,
Oy O CI(F). Then we have d.od (x) = eld(edx) = (eOe)dx = 0 and similarly

for d;edg(y), which means that dﬁ = d? =0.

Hence the pairs (C1(E), d.) and (C1(F), d;) become two chain-complexes, which by

definition are the Koszul complexes - usually denoted K(x,, ...,x,) respectively
K(yp s Ym) -

Finally, we prove that T is a morphism of chain-complexes. By definition this means
that the diagram below commutes.

ds
aE —— @

Tld lT

Cl(E) —> CI(E)

But if y O CI(F) , we have by Hestenes' theorem (proposition 1):

(d,eT)y =e0Ty = T(T* Oy) = T(fOy) = (Ted;)y, which shows the com-
mutativity. Moreover, if det(c;;) isinvertiblein R, then T is an isomorphism of the
Koszul complexes.

Conclusions and future work

In this paper we have given some hints as to the many possibilities that are inherent in
using generalized versions of Clifford algebra outside of the conventional domains -
such as e.g. geometry - where this algebrais usually applied. We hope that our choice
of examples, although few and simple - have convinced the reader that it is a fruitful
idea to use the computational power of Clifford algebra also in fields like combinator-
ics and algebra. In future papers we hope to give more substantial results that will
prove the strength of this approach.
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