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Abstract

 

In this paper we focus on some combinatorial aspects of Clifford algebra and show
how this algebra allows combinatorial theorems - like e.g. Sperner’s lemma  - to be
“built into the algebraic background”, and become part of the structure of the algebra
itself. We also give an example of how cumbersome combinatorial proofs can be
“mechanized” and carried out in a purely computational manner. 

 

Introduction

 

In his monumental and groundbreaking 

 

Ausdehnungslehre

 

 [4] from 1844, Herman
Grassmann set out to build an “algebra for everything” - an algebra which he illus-

trated by various geometric examples
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. Being both far ahead of his time and on the
outside of the academic mathematical community, Grassmann’s ideas received little
attention during his own lifetime. However, during the last years of Grassmann’s life
(late 1870s), his ideas were taken up by William Clifford [2], [3], who developed the
algebra that today bears his name. In more recent times mathematicans and physicists
- notably Marcel Riesz [8], Gian-Carlo Rota [1], [9], and David Hestenes [5], [6], [7] -
have rediscovered and continued this development. Hestenes has focused on the geo-
metric aspects of Clifford algebra - introducing the synonymous term 

 

geometric alge-
bra

 

 - and shown how it provides a powerful geometric language that serves as a bridge
between mathematics and physics.

In this paper we aim to connect with Grassmann’s original ideas, and follow Rota [9]
by focusing on the purely combinatorial aspects of Clifford algebra. 

 

Some notation and background

 

Since we are only interested in combinatorial and algebraic aspects of Clifford alge-
bra, we will allow our scalars to lie in an arbitrary commutative ring R with unit ele-
ment. We will also take a slightly different point of view regarding the Clifford
algebra and its interpretation. 

Let X be a finite set which is totally ordered, i.e. , where

. We will identify the k-base-blades  with the k-subsets

 and denote the pseudoscalar  by X. The ring-unit 1 is identi-

fied with the empty set . We will view the Clifford algebra Cl(X) as the free R-mod-

ule generated by the power-set  of all subsets of X, i.e. 

Note that if  is a bijection, then Cl(X) is isomorphic to Cl(Y).

 

1. For instance, the today familiar concept of 

 

vector

 

 is an example of what Grassmann termed 

 

evolution

 

. See [4], p. 46.

X x1 … xn, ,{ }=

x1 x2 … xn< < < x1'x2'…xk'

x1' … xk', ,{ } x1x2…xn

∅
℘ X( ) Cl X( )  R

℘ X( )
.⊕=

X Y→



 

2

 

We will always assume that . The set of k-vectors is denoted by

Cl

 

k

 

(X). We observe that every bilinear map  is uniquely

determined by its values on . Moreover, if P is a proposition, we will
use (P) to denote 1 or 0 depending on whether P is true or false.

Let . The following notation is used below:

 

Geometric product

 

: , 

where  and denotes symmetric difference.

 

Outer product

 

: .

 

Left inner product

 

: .

 

Scalar product

 

: .

 

Reverse

 

: , where .

 

Complement

 

: .

All of these definitions are extended to Cl(X) by linearity. 

Below we will need the following simple

 

Lemma 1:

 

 , .

 

Proof:

 

By linearity, it is enough to verify this for base-blades, i.e. for , 

 where . This is a simple exercise (using e.g. Venn 
diagrams), which we leave to the reader.

If Cl(X) and Cl(Y) are two Clifford algebras over the same ring, we call a linear and
grade preserving map  :  an 

 

outermorphism

 

 if  and

, . The obvious fact that an outermorphism on
Cl(X) is uniquely determined by its values on X will be implicitely used below in all
our definitions of various outermorphisms. 

The 

 

dual

 

 of  is defined by  .

We will also make use of the following fundamental theorem, due to David Hestenes
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:

 

Prop. 1:

 

If  :  is an outermorphism with adjoint , then

.

 

1. Hestenes & Sobczyk [7], p.69, (1.14).

x2 1 ,  x X∈∀=

Cl X( ) Cl X( ) Cl X( )→×
℘ X( ) ℘ X( )×

A B ℘ X( )∈,

AB εA B∆=

ε 1±=  ∆

A B∧ A B= ∅∩( )AB=

A B∠ A B⊆( )AB=

A*B A=B( )AB=

A† 1–( )εA= ε
A

2 
 =

A
~

AX 1–=

x y z∠( )∠ x y∧( ) z  ∠= x y z Cl X( )∈, ,∀

x A=

y B z, C= = A B C ℘ X( )∈, ,

T Cl X( ) Cl Y( )→ T 1( ) 1=

T x y∧( ) Tx Ty∧= x y Cl X( )∈,∀

T
~

T T x( )
~

T xX( )X 1–=

T Cl X( ) Cl Y( )→ T*

x Ty∠ T  T*x y ∠( )=
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Clifford algebras and graphs

 

Let  be a (undirected) graph with vertices  and edges

. Choose a total ordering on V according to the given enumeration.

This induces a direction on G, by letting an edge  that connects the vertices

 be directed from to  if .  

We now form the two Clifford algebras Cl(V) and Cl(E) with , and 

for , , we define the mapping g :  by 

 (  and  are neighbors ), and 

 (  ends at ) - (  starts from ) .

Moreover, we define the following outermorphisms:

Since = , 

and  = ,

we see that 

 

∂

 

*

 

 is the adjoint of 

 

∂

 

. 

The 

 

Laplacian

 

 of the graph G is defined as the outermorphism

 

: .

 

We immediately obtain the following relation between ,  and :

 

Prop. 2:

 

.

 

Proof:

 

A direct computation gives 

  =  =

G V E,( )= V v1 … vn, ,{ }=

E e1 … em, ,{ }=

e E∈

v v' V∈, v v' v v'<

vi
2 ej

2 1= =

v v' V∈, e E∈ V E∪( ) V× 1– 0 1, ,{ }→

g v v',( ) = v v'

g e v,( ) = e v e v

Cl(V)              Cl(V)

   v                Σ g(v, v′) v′ ,  for v ∈ V. 

Α

v′∈ V

Cl(V)              Cl(V)

   v                val(v) v , where val(v) is the valence of v. 

δ

Cl(E)              Cl(V)
∂

   e                Σ g(e, v) v ,  for e ∈ E. 
v∈ V

Cl(V)              Cl(E)
∂∗

   v                Σ g(e, v) e ,  for v ∈ V. 
e∈ E

∂e( )*v ΣΣΣΣ
v' V∈

g e v',( )v'*v= g e v,( )

e * ∂* v( ) e*ΣΣΣΣ
e' E∈

g e' v,( )e'= g e v,( )

∆ ∂°∂*= Cl V( ) Cl V( )→

∆ δ A

∆ δ A–=

∆ v( ) ∂°∂* v( ) ∂ ΣΣΣΣ
e E∈

g e v,( )e= = ΣΣΣΣ
e E∈

ΣΣΣΣ
v' V∈

g e v,( )g e v',( )v'
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          =   _   

          =   = .

One also easily shows the following1

Prop. 3: ,  , .

Moreover, there is the following useful

Lemma 2: If  the graph G = (V, E) contains a cycle, then .

Proof: We identify E with . Assume that G contains the cycle  

. But  .  

Therefore , which means that 

 contains a Λ-factor 0. Hence .

The converse of lemma 2 is contained in 

Lemma 3: Let G = (V, E) be a graph with  and write

. If F is a (n-1)-subset of E such that the edges of F

form a tree (i.e. no cycles), then we have , ,
where the sign is independent of v.

Proof: To show that  is independent of v, it is enough to show that 

 if  and  are connected by an edge - say f - in F. But if 

, it follows that .

Moreover, since F is a tree and , F is a spanning tree for G and hence con-

tains all the vertices of V. Let  have neighbors . Then we have

 and hence, by applying the same 

argument to  we get  , which finishes the proof.

We note in general that if , then two vertices   and  are in the same compo-

nent of F if and only if .

We are now ready to prove a well-known and nice result about the number of span-
ning trees in a given graph. Our proof shows the computational power inherent in
applying Clifford algebra to graph theory.

Prop. 4: If : Cl(V) → Cl(V) is the Laplacian outermorphism, then

 , where N is the number of spanning trees in G, and 

:  is given by =  s , .

1. the proof of which is left to the reader.

ΣΣΣΣ
e v',

g e v,( )g e v',( )  = 1( ) v' ΣΣΣΣ
e v',

g e v,( )g e v',( )  = 1–( )v'

val v( )v ΣΣΣΣ
v'

g v v',( )v'– δ v( ) A v( )–

tr A 0= tr A2∧ E= tr A3∧ 2–( ) # 3-cycles in G( )=

∂E 0=

e1e2…em

v1 v2 … vk v1, , , , vk v1– vk vk 1––( ) vk 1– vk 2––( ) … v2 v1–( )+ + +=

v2 v1–( ) … vk vk 1––( ) vk v1–( )∧ ∧ ∧ 0=

∂E ∂ e1e2…em( ) ∂ e1 e2 … em∧ ∧ ∧( )= = ∂E 0=

V n E, m= =

V v1v2…vn=

v ∂F( )∧ V±= v V∈∀

v ∂F( )∧

v' ∂F( )∧ v'' ∂F( )∧= v' v''

∂f v'' v'–= v'' v'–( ) ∂F( )∧ ∂ f( ) ∂F( )∧ ∂ f F∧( ) 0= = =

F n 1–=

v v' v'' …, ,

v v' v–( ) v'' v–( ) …∧ ∧ ∧ v v' v'' …∧ ∧ ∧=

v' v'' …, , v ∂F( )∧ V±=

F E⊆ v' v''

v'' v'–( ) ∂F( )∧ 0=

∆ ∂°∂*=

∆adj Nℑ=

ℑ Cl V( ) Cl V( )→ ℑ v( ) ΣΣΣΣ
v' V∈

v'= v V∈∀
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Proof: From the definition of the adjoint, we have . Moreover,

 , . Hence we must show that , 

. 

Applying the definitions, we get

. Now, since  is grade-

preserving,  is a pseudoscalar and thus commutes with . Hence we have

Now,  and yV are -vectors in Cl(V), and since  and are grade-pre-

serving,  and  are -vectors in Cl(E). Expanding these vec-

tors, and summing over all -vectors , we get

Applying lemma 1, we get

Now, by lemma 2,   unless F is a spanning tree, and, by lemma 3, in this case

we have . Hence, remembering that N denotes the number of

spanning trees in G, we have = , which

finishes the proof.

Combinatorial algebraic topology

Let V denote an arbitrary finite set, and let . Let Z be the ring of

scalars and consider the two Clifford algebras Cl(V) and Cl(A) over Z with

. and . 

A labeling of the elements of V by the elements of A is a mapping λ : V → A. 
Any such labeling is naturally extended to an outermorphism  λ : Cl(V) → Cl(A). 

Define the outermorphisms  : Cl(V) → Cl(V) and : Cl(A) → Cl(A) by 

 and  respectively.

∆adj ∆*̃ ∆̃= =

∆adj y( ) ΣΣΣΣ
x V∈

x* ∆adjy( )( ) x= y V∈∀ x* ∆adjy( ) N=

x y V∈,∀

x* ∆adjy( ) x* ∆̃y( ) x* ∆ yV( )V†( ) x ∆ yV( )V†( )〈 〉 0= = = ∆

x∆ yV( ) V†

x * ∆adjy( ) x∆ yV( )V†〈 〉 0 V†x∆ yV( )〈 〉 0 V†x( )* ∆ yV( )( )= = =

 V†x( )*∂ ∂* yV( )( ) ∂* V†x( ) * ∂* yV( )   .= =

V†x V 1–( ) ∂ ∂*

∂* V†x( ) ∂* yV( ) V 1–( )
V 1–( ) F E⊆

x* ∆adjy( ) ∂* V†x( ) * ∂* yV( ) ΣΣΣΣ
F

∂* V†x( )*F( ) F†( ) * ΣΣΣΣ
F

∂* yV( )*F†( ) F( )= =

 ΣΣΣΣ
F

V†x( )*∂F( ) yV( )*∂F†( ) ΣΣΣΣ
F

xV( )*∂F†( ) yV( )*∂F†( )= =

 ΣΣΣΣ
F

xV( )*∂F( ) yV( )*∂F( ) ΣΣΣΣ
F

∂F x V ∠( ) ∠( )  ∂F y V∠( ) ∠( )  .= =

x* ∆adjy( ) ΣΣΣΣ
F

∂F x∧( )V ∂F y∧( )V V2 ΣΣΣΣ
F

x ∂F∧( ) y ∂F∧( )  .= =

∂F 0=

x ∂F∧ y ∂F∧ V±= =

x* ∆adjy( ) V2 ΣΣΣΣ
F SpT∈

x ∂F∧( )2= V4N N=

A a1 … an, ,{ }=

v2 1 v V∈,= ai
2 1 ai A∈,=

∂V ∂A

∂V x( ) ΣΣΣΣ
v V∈

v( ) x∠= ∂A y( ) ΣΣΣΣ
a A∈

a( ) y∠=
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We now define the content mapping Cont and the index mapping Ind by 

where 

Note that . We now have the following

Prop. 5: .

Proof: Consider the n-blade  in Cl(V) and let  denote deletion of 

. We now have

Moreover, we have

We must consider the following two different possibilities: 

1) If λ is injective on , we can WLOG1 assume that . We

then have

.

2) If λ is not injective on , we can WLOG assume that . In

this case we get

1. Without Loss Of Generality.

Cln(V)              Z
   x                A†  *  λ(x)  

Cont

Cln(V)              Z
   x                α °  λ ° ∂V  (x)  

Ind

Cl(A)              Cl(A)
   y                (an-1 ... a1) ∠ y  . 

α

α Cln 1– A( )( ) Z⊆

Ind α°λ°∂V α°∂A°λ 1–( )n 1– Cont= = =

x v1v2…vn= v̂

v

α°λ°∂V x( ) α°λ  v1 … vn+ +( ) v1…vn( ) ∠( ) α°λ ΣΣΣΣ
j

1–( )j 1– v1…vj
ˆ …vn( )= =

 α  ΣΣΣΣ 1–( )j 1– λ v1( ) … λ vj( )ˆ … λ vn( )∧ ∧ ∧ ∧( )=

 ΣΣΣΣ 1–( )j 1– an 1– …a1( ) λ v1( ) … λ vj( )ˆ … λ vn( )∧ ∧ ∧ ∧( )  .∠=

α°∂A°λ x( ) an 1– …a1( )  a1 … an+ +( ) λ v1( ) … λ vn( )∧ ∧( ) ∠( )∠=

 an 1– …a1( ) a1 … an+ +( )∧( ) λ v1( ) … λ vn( )∧ ∧( )∠=

 an 1– …a1an( ) * λ x( ) 1–( )n 1– Cont x( )  .= =

v1 … vn, , λ vi( ) ai i∀,=

α°λ°∂V x( ) ΣΣΣΣ 1–( )j 1– an 1– …a1( ) λ v1( ) … λ vj( )ˆ … λ vn( )∧ ∧ ∧ ∧( )∠=

 1–( )n 1– an 1– …a1( ) a1 … an 1–∧ ∧( )∠ 1–( )n 1–  ,= =

Cont x( ) 1–( )n 1– anan 1– …a1( ) * a1…an( ) 1–( )n 1–= =

v1 … vn, , λ v1( ) λ v2( )=
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.

This proves the proposition.

Hence we have the following commutative diagram:

Remark: From this index theorem there follows immediately several basic results in
combinatorial topology, notably the so called Sperner’s lemma.

Koszul complexes

We like to finish by presenting an example from algebra where we hope to illustrate
that it may sometimes be a good idea not to restrict the scalars of the Clifford algebra
to only R or C, but to allow them to lie in arbitrary commutative rings with unit. 

Let I and J be two ideals in such a ring R generated by  and 

respectively.  We also assume that  , i.e. that  for some in R.

Below we are going to use Clifford algebra to define the famous Koszul complexes

 and , which have a lot of applications in algebra and dif-

ferential topology. 

We will also give an almost trivial proof of the well-known fact that there exists a
chain-complex morphism , which is an isomorphism

of chain-complexes if .

We start by introducing sets  and  and their associ-

ated Clifford Algebras Cl(E) and Cl(F) over the ring R. We may assume that

, .

Let T :  be the outermorphism defined by , and denote

by :  the outermorphism defined by .

Then we have , so  is the adjoint of . Moreover, if

 and  , we obtain .

α°λ°∂V x( ) ΣΣΣΣ 1–( )j 1– an 1– …a1( ) λ v1( ) … λ vj( )ˆ … λ vn( )∧ ∧ ∧ ∧( )∠=

 an 1– …a1( ) λ v2( ) λ v3( ) … λ vn( )∧ ∧ ∧( )∠=

 an 1– …a1( ) λ v1( ) λ v3( ) … λ vn( )∧ ∧ ∧( )∠–

 0  ,=

Cont x( ) an…a1( ) * λ v1( ) λ v2( ) … λ vn( )∧ ∧ ∧( ) 0= =

Cln(V)               Cln-1(V)
∂V Cln-1(A)

λ

ZCln(A)

λ α
∂A Cln-1(A)

α

Ind

Z

(-1)n-1id

Cont

x1 … xn, ,{ } y1 … ym, ,{ }

J I⊆ yj ΣΣΣΣcjixi= cji

K x1 … xn, ,( ) K y1 … ym, ,( )

K y1 … ym, ,( ) K x1 … xn, ,( )→

I J=

E e1 … en, ,{ }= F f1 … fm, ,{ }=

ei
2 fj

2 1= = i j,∀

Cl F( ) Cl E( )→ Tfj ΣΣΣΣcjiei=

T* Cl E( ) Cl F( )→ T*ei ΣΣΣΣcjifj=

T*ei  * fj cji ei * Tfj= = T* T

e x1e1 …xnen+= f y1f1 …ymfm+= T*e f=
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Let us introduce the two “boundary” mappings :  and 

:   by  ,  respectively  ,

. Then we have  and similarly

for , which means that .

Hence the pairs  and  become two chain-complexes, which by

definition are the Koszul complexes - usually denoted  respectively

. 

Finally, we prove that T is a morphism of chain-complexes. By definition this means
that the diagram below commutes.

But if , we have by Hestenes’ theorem (proposition 1):

, which shows the com-

mutativity. Moreover, if  is invertible in R, then T is an isomorphism of the

Koszul complexes.

Conclusions and future work

In this paper we have given some hints as to the many possibilities that are inherent in
using generalized versions of Clifford algebra outside of the conventional domains -
such as e.g. geometry - where this algebra is usually applied. We hope that our choice
of examples, although few and simple - have convinced the reader that it is a fruitful
idea to use the computational power of Clifford algebra also in fields like combinator-
ics and algebra. In future papers we hope to give more substantial results that will
prove the strength of this approach.
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de Cl E( ) Cl E( )→

df Cl F( ) Cl F( )→ de x( ) e x∠= x Cl E( )∈∀ df y( ) f y∠=

y Cl F( )∈∀ de° de x( ) e e x∠( )∠ e e∧( ) x∠ 0= = =

df ° df y( ) de
2 df

2 0= =

Cl E( ) de,( ) Cl F( ) df,( )

K x1 … xn, ,( )

K y1 … ym, ,( )

Cl(F)               Cl(F)

Cl(E)

T

Cl(E)

T

df

de

y Cl F( )∈

de°T( ) y e Ty∠ T  T*e y ∠( ) T  f y ∠( ) T°df( ) y= = = =

det cji( )
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